首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

2.
The evolution of mass-losing very massive stars in the 500–10000M range has been investigated for two different initial compositions, (X, Z)=(0.8,0.0) and (X, Z)=(1.0,0.0). The evolutionary tracks are governed by two opposing factors which are the increase in the mean molecular weight in the convective core and the effect of mass loss. Conservative evolution of stars with massM?10000M is similar to that of massive stars (20–100M ), always moving to lower effective temperatures. For low values of the standard mass loss parameterN (50?N?200) the two opposing factors are almost in balance and the star is forced to move in a series of loops. For higher mass loss rates the loops disappear. In the 10000M case no loops are observed and the tracks always move to higher effective temperatures. For a given mass loss rate the transition between right and left moving tracks occurs at higher masses the lower is the mass loss rate.  相似文献   

3.
Stellar evolution calculations were carried out from the main sequence to the final stage of the asymptotic giant branch for stars with initial masses 1 MMZAMS ≤ 2 M and metallicity Z = 0.01. Selected models of evolutionary sequences were used as initial conditions for solution of the equations of radiation hydrodynamics and time–dependent convection describing radial stellar pulsations. The study was aimed to construct the hydrodynamic models of Mira–type stars that show the secular decrease in the pulsation period Π commenced in 1970th at Π = 315 day. We show that such a condition for the period change is satisfied with evolutionary sequences 1 MMZAMS ≤ 1.2 M and the best agreement with observations is obtained for MZAMS = 1.2 M. The pulsation period reduction is due to both the stellar radius decrease during the thermal pulse of the helium burning shell and mode switch from the fundamental mode to the first overtone. Theoretical estimates of the fundament parameters of the star at the onset of pulsation period reduction are as follows: the mass is M = 0.93 M, the luminosity is L = 4080 L, and the radius is R = 220 R. The mode switch occurs 35 years after the onset of period reduction.  相似文献   

4.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

5.
Excitation of radial oscillations in population I (X = 0.7, Z = 0.02) red supergiants is investigated using the solution of the equations of radiation hydrodynamics and turbulent convection. The core helium burning stars with masses 8M M ≤ 20M and effective temperatures T eff < 4000 K are shown to be unstable against radial pulsations in the fundamental mode. The oscillation periods range between 45 and 1180 days. The pulsational instability is due to the κ-mechanism in the hydrogen and heliumionization zones. Radial pulsations of stars with mass M < 15M are strictly periodic with the light amplitude ΔM bol ≤ 0?5. The pulsation amplitude increases with increasing stellar mass and for M > 15M the maximum expansion velocity of outer layers is as high as one third of the escape velocity. The mean radii of outer Lagrangean mass zones increase due to nonlinear oscillations by ≤30% in comparison with the initial equilibrium. The approximate method (with uncertainty of a factor of 1.5) to evaluate the mass of the pulsating red supergiant with the known period of radial oscillations is proposed. The approximation of the pulsation constant Q as a function of the mass-to-radius ratio is given. Masses of seven galactic red supergiants are evaluated using the period-mean density relation.  相似文献   

6.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

7.
8.
Mass is a fundamental parameter, but the masses are not well known for most hot subdwarfs. We propose a method of determining the masses of hot subdwarfs. Using this method, we studied the masses of hot subdwarfs from the ESO supernova Ia progenitor survey and the Hamburg quasar survey. The study shows that most of the subdwarf B stars have masses between 0.42 and 0.54 M , whilst most sdO stars are in the range 0.40~0.55 M . Comparing our study to the theoretical mass distributions of Han et al. (Mon. Not. R. Astron. Soc. 341:669, 2003), we found that sdO stars with mass less than ~0.5 M may evolve from sdB stars, whilst most high-mass (>0.5 M ) sdO stars result from mergers directly.  相似文献   

9.
We performed hydrodynamic computations of nonlinear stellar pulsations of population I stars at the evolutionary stages of the ascending red giant branch and the following luminosity drop due to the core helium flash. Red giants populating this region of the Hertzsprung–Russel diagram were found to be the fundamental mode pulsators. The pulsation period is the largest at the tip of the red giant branch and for stars with initial masses from 1.1 M to 1.9 M ranges from ∏ ≈ 254 day to ∏ ≈ 33 day , respectively. The rate of period change during the core helium flash is comparable with rates of secular period change in Mira type variables during the thermal pulse in the helium shell source. The period change rate is largest (∏?/∏ ≈ ?10?2 yr?1) in stars with initial mass M ZAMS = 1.1 M and decreases to ∏?/∏ ~ ?10?3 yr?1 for stars of the evolutionary sequence M ZAMS = 1.9 M . Theoretical light curves of red giants pulsating with periods ∏ > 200 day show the presence of the secondary maximum similar to that observed in many Miras.  相似文献   

10.
We consider the evolution of a rotating star with a mass of 16M and an angular momentum of 3.25 × 1052 g cm2 s?1, along with the hydrodynamic transport of angular momentum and chemical elements in its interiors. When the partial mixing of matter of the turbulent radiative envelope and the convective core is taken into account, the efficiency of the angular momentum transport by meridional circulation in the stellar interiors and the duration of the hydrogen burning phase increase. Depending on the Schmidt number in the turbulent radiative stellar envelope, the ratio of the equatorial rotational velocity to the circular one increases with time in the process of stellar evolution and can become typical of early-type Be stars during an additional evolution time of the star on the main sequence. Partial mixing of matter is a necessary condition under which the hydrodynamic transport processes can increase the angular momentum of the outer stellar layer to an extent that the equatorial rotational velocity begins to increase during the second half of the evolutionary phase of the star on the main sequence, as shown by observations of the brightest stars in open star clusters with ages of 10–25 Myr. When the turbulent Schmidt number is 0.4, the equatorial rotational velocity of the star increases during the second half of the hydrogen burning phase in the convective core from 330 to 450 km s?1.  相似文献   

11.
The evolution of Population I stars with initial masses 70M M ZAMS ≤ 130M is considered. The computations were performed under various assumptions about the mass loss rate and were terminated at the phase of gravitational contraction after core helium exhaustion. The mass loss rate at the helium burning phase, ?3α , is shown to be the main parameter that determines the coefficients of the mass—luminosity relation for Wolf—Rayet stars. Several more accurate mass—luminosity relations for mass loss rates ? = f 3α ?3α , where 0.5 ≤ f 3α ≤ 3, are suggested, along with the mass—luminosity relation that combines all of the evolutionary sequences considered. The results of the stellar evolution computations were used as initial conditions in solving the hydrodynamic equations describing the spherically symmetric motions of a self-gravitating gas. The outer layers of massive Population I stars are unstable against radial oscillations throughout the helium burning phase. The oscillation amplitude is largest at enhanced carbon and oxygen abundances in the outer stellar layers, i.e., at a lower initial stellar mass M ZAMS or a lower mass loss rate during the entire preceding evolution. In the course of evolution, the radial oscillation amplitude decreases and the small nonlinearity of the oscillations at M < 10M allow the integral of mechanical work W done by an elementary spherical layer of gas in a closed thermodynamic cycle to be calculated with the necessary accuracy. The maximum of the radial dependence of W is shown to be located in layers with a gas temperature T ~ 2 × 105 K, where the oscillations are excited by the iron Z-bump κ-mechanism. Comparison of the radial dependences of the integral of mechanical work W and the amplitude of the radiative flux variations suggests that the nonlinear radial oscillations of more massive Wolf—Rayet stars are also excited by the κ-mechanism.  相似文献   

12.
We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty “dead” zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-in field in this region. Magnetic field is quasi-azimuthal close to the outer boundary of accretion disks for standard ionization rates and dust grain size a d=0.1 μm. In the case of large dust grains (a d>0.1 μm) or enhanced ionization rates, the magnetic field is quasi-radial in the outer regions. It is shown that the inner boundary of dusty “dead” zone is placed at r=(0.1–0.6) AU for accretion disks of stars with M=(0.5–2)?M . Outer boundary of “dead” zone is placed at r=(3–21) AU and it is determined by magnetic ambipolar diffusion. Mass of solid material in the “dead” zone is more than 3?M for stars with M≥1?M .  相似文献   

13.
On the basis of the mixing-length theory, macroscopic turbulent stress is incorporated into the hydrostatic equilibrium equation in our model of stellar structure and evolution. For an 8M star from the main sequence stage to the early AGB stage, the effect of turbulence was followed through calculation of the ratio of turbulence stress gradient to gravity. The results are: during the stages of nuclear burning the ratio is almost negligibly small; however, during the RGB and early AGB stages, there exists a thin layer in the outer convective layer where the ratio amounts to several units, while outside the thin layer the ratio may attain 65%. These facts have obvious effects on the central temperature of the AGB star and on the star's structure and evolutionary features at the onset of thermal pulsation.  相似文献   

14.
We analytically generalize the well-known solution of steady supersonic spherically symmetric gas accretion onto a star (Bondi 1952) for an iron atmosphere with completely degenerate electrons with an arbitrary degree of relativity. This solution is used for typical physical conditions in the vicinity of protoneutron stars produced by gravitational collapse with masses M 0=(1.4?1.8)M and over a wide range of nonzero “iron gas” densities at infinity, ρ=(104?5×106)g cm?3. Under these conditions, we determine all accretion parameters, including the accretion rate, whose value is ~(10?50)M s?1 at M 0=1.8M (it is a factor of 1.7 lower for M 0=1.4M , because the accretion rate is exactly ∝M 0 2 ). We take into account the effect of accreting-gas rotation in a quasi-one-dimensional approximation, which has generally proved to be marginal with respect to the accretion rate.  相似文献   

15.
We show that hydrostatically equilibrium models for the thin photospheres of helium stars based on new opacities κR (OPAL and OP) can be constructed only for masses M<5M . The parameter Г=κL/4πGMc, defined as the ratio of light pressure to gravity, exceeds a critical value of 1.0 for larger masses, which must result in mass outflow under light pressure. This mass limit matches the observed lower limit for the masses of Wolf-Rayet stars (M WR>5M )), which is an additional argument that the Wolf-Rayet stellar cores are actually helium stars. By solving the equation of radiative transfer in extended atmospheres, we construct a semiempirical model for a WN5 star (M WN5=10M )) with a helium core and an expanding envelope, whose physical and geometric parameters are known mainly from light-curve solution for the eclipsing binary V444 Cyg (WN5+06): outflow rate $\dot M \approx 1.0 \times 10^{ - 5} M_ \odot yr^{ - 1} $ , terminal velocity V ≈2000 km s?1, and expanding-envelope optical depth τenv≈25. The temperature at the outer boundary of the photosphere of a helium star surrounded by such an envelope is approximately 130 kK higher than that in the absence of an envelope, being T ph≈240 kK. Because of the high temperatures, the absorption coefficients at the corresponding photospheric levels are smaller than those in models with no envelope; therefore, the photosphere turns out to be in hydrostatic equilibrium and stable against light pressure (Гmax≈0.9). As a way out of this conflicting situation (an expanding envelope together with a hydrostatically equilibrium photosphere), we propose a model of discrete mass outflow, which is also supported by the observed cloudy structure of the envelopes in this type of stars. To quantitatively estimate parameters of the nonuniform outflow model requires detailed gas-dynamical calculations.  相似文献   

16.
Excitation of radial pulsations in red supergiants of Magellanic Clouds is investigated using the stellar evolution calculations and the self-consistent solution of the equations of radiation hydrodynamics and turbulent convection. The stars with initial masses 6M M ZAMS ≤ 28M and the initial chemical composition X = 0.7, 0.004 ≤ Z ≤ 0.008 are shown to be unstable against fundamental mode oscillations with periods from 17 to 1200 days as they become helium burning red supergiants. The period-luminosity relation slightly depends on the mass loss rate varying with a factor of three, whereas its dependence on the metal abundance is given by δM bol = 0.89δ log Z. In comparison with galactic red supergiants the low metal abundances in red supergiants of Magellanic Clouds are responsible for their higher effective temperatures and substantially narrower ranges of evolutionary radius change during helium burning. Therefore on the period-mass diagram the red supergiants of Magellanic Clouds are located within the strip with width of δ logM ≈ 0.09, so that the uncertainty of mass evaluation of the red supergiant with the known pulsation period is nearly 25%.  相似文献   

17.
The system of subdwarfs G89-14 is one of the most metal-poor multiple stars with an atmospheric metal abundance [m/H] = ?1.9. Speckle interferometry at the 6-m BTA telescope has revealed that G89-14 consists of four components. Measurements of the magnitude difference between the components and published data have allowed their masses to be estimated: M A ≈ 0.67 M , M B ≈ 0.24M ,M C ≈ 0.33M , andM D ≈ 0.22M . The ratio of the orbital periods of the subsystems has been obtained, 0.52 yr: 3000 yr: 650 000 yr (1: 5769: 1 250 000), indicative of a high degree of hierarchy o fG89-14 and its internal dynamical stability. The calculated Galactic orbital elements and the low metallicity of the quadruple system suggest that it belongs to the Galactic halo.  相似文献   

18.
Population synthesis is used to model the number of neutron stars in globular clusters that are observed as low-mass X-ray sources and millisecond radio pulsars. The dynamical interactions between binary and single stars in a cluster are assumed to take place only with a continuously replenished “background” of single stars whose properties keep track of the variations in parameters of the cluster as a whole and the evolution of single stars. We use the hypothesis that the neutron stars forming in binary systems from components with initial masses of ~8–12 M during the collapse of degenerate O-Ne-Mg cores through electron captures do not acquire a high space velocity. The remaining neutron stars (from single stars with masses >8 M or from binary components with masses >12 M ) are assumed to be born with high space velocities. According to this hypothesis, a sizeable fraction of the forming neutron stars remain in globular clusters (about 1000 stars in a cluster with a mass of 5 × 105 M ). The number of millisecond radio pulsars forming in such a cluster in the case of accretion-driven spinup in binary systems is found to be ~10, in agreement with observations. Our modeling also reproduces the observed shape of the X-ray luminosity function for accreting neutron stars in binary systems with normal and degenerate components and the distribution of spin periods for millisecond pulsars.  相似文献   

19.
Understanding transport processes inside stars is one of the main goals of asteroseismology. Chemical turbulent mixing can affect the internal distribution of μ near the energy generating core, having an effect on the evolutionary tracks similar to that of overshooting. This mixing leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behavior of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We describe the effects of convective overshooting and turbulent mixing on the frequencies of gravity modes in B‐type main sequence stars. In particular, the cases of p‐g mixed modes in β Cep stars and high‐order modes in SPBs are considered. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Using the technique of determining the sum of the masses of double stars, we have estimated the mass of the central object in the globular cluster M15. The radial velocities of stars at distances up to 1″ from the cluster center have been used. The parameters of circular orbits and the space velocities of 11 selected field stars relative to the cluster center have been determined from the calculated velocity dispersions with respect to the mean radial velocity. Based on the mean space velocity V, 14 km s?1, and using the energy integral, we have estimated the mass of the central object to be within the range (1?9) × 103 M . We have estimated the kinetic power of the outflow of matter from the region surrounding the black hole in M15 and the specific angular momentum of the black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号