首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recent detailed mapping along the Motagua fault zone and reconnaissance along the Chixoy—Polochic and Jocotán—Chamelecón fault zones provide new information regarding the nature of Quaternary deformation along the Caribbean—North American plate boundary in Central America.The southern boundary of the Motagua fault zone is defined by a major active left-slip fault that ruptured during the February 4, 1976 Guatemala earthquake. The recurrent nature of slip along the fault is dramatically demonstrated where stream terraces of the Río El Tambor show progressive left-slip and vertical (up-to-the-north) slip. Left-slip increases from 23.7 m (youngest mappable terrace) to 58.3 m (oldest mappable terrace) and vertical slip increases from 0.6 m to 2.5 m. The oldest mappable terrace crossed by the fault appears to be younger than 40,000 years and older than 10,000 years.Reconnaissance along the Chixoy—Polochic fault zone between Chiantla and Lago de Izabal has located the traces of a previously unmapped major active left-slip fault. Geomorphic features along this fault are similar to those observed along the active trace of the Motagua fault zone. Consistent and significant features suggestive of left-slip have so far not been observed along the Guatemala section of the Jocotán—Chamelecón fault zone.In Central America, the active Caribbean—North American plate boundary is comprised of the Motagua, Chixoy—Polochic, and probably the Jocotán—Chamelecón fault zones, with each accommodating part of the slip produced at the mid-Cayman spreading center. Similarities in geomorphic expression, apparent amount of left-slip, and frequency and magnitude of historical and instrumentally recorded earthquakes between the active traces of the Motagua and Chixoy—Polochic fault zones suggest a comparable degree of activity during Quaternary time; the sense and amount of Quaternary slip on the Jocotán—Chamelecón fault zone remain uncertain, although it appears to be an active earthquake source. Uplift of major mountain ranges on the north side of each fault zone reflects the small but consistent up-to-the-north vertical component (up to 5% of the lateral component) of slip along the plate boundary. Preliminary findings, based on offset stream terraces, indicate a late Quaternary slip rate along the Caribbean—North American plate boundary of between 0.45 and 1.8 cm/yr. Age dating of offset Quaternary terraces in Guatemala will allow refinement of this rate.  相似文献   

2.
A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35–50 μm quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil’s Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr—much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values.  相似文献   

3.
Northcote TG 《GeoJournal》1996,40(1-2):127-133
Perhaps nowhere in Canada, if indeed in North America, could two adjacent watershed basins be selected which show such remarkable differences in their historical and recent response to human population growth effects. One — the Fraser — covers some 234,000 km2 (about one quarter of the province of British Columbia) and houses nearly two-thirds of its total population. The other — the Okanagan — forms a small part (some 14,000 km2) of the upper Columbia River drainage in Canada. Native Indian populations at maximum before European contact in the late 1700s were about 50,000 in the Fraser basin and probably less than a fifth of that in the Okanagan. Present total resident populations of the Fraser and Okanagan basins, about 2 million and 1\4 million respectively, have greatly different distributions and thereby effects within the watersheds they occupy. In addition seasonal tourist populations have important and differential impacts within the two watersheds. Expression of these effects on water, fisheries and other aquatic resources of the two basins are explored along with possibilities and suggestions for their sustainable development. The latter, despite some glimmers of hope, will not be tenable without major changes in public attitude, in government policy at all levels, and in other measures which to many may seem impossible.  相似文献   

4.
The southwestern United States—this papers study region—is home to large urban centers and features a thriving agro-industrial economic sector. This region is also one of the driest in North America, with highly variable seasonal and inter-annual precipitation regimes and frequent droughts. The combination of a large demand for usable water and semi-arid climate has led to groundwater overdraft in many important aquifers of the region. Groundwater overdraft develops when long-term groundwater extraction exceeds aquifer recharge, producing declining trends in aquifer storage and hydraulic head. In conjunction with overdraft, declines in surface-water levels and streamflow, reduction or elimination of vegetation, land subsidence, and seawater intrusion are well documented in many aquifers of the southwestern United States. This work reviews case studies of groundwater overdraft in this region, focusing on its causes, consequences, and remedial methods applied to counter it.  相似文献   

5.
We use paleomagnetic data to map Mesozoic absolute motion of North America, using paleomagnetic Euler poles (PEP). First, we address two important questions: (1) How much clockwise rotation has been experienced by crustal blocks within and adjacent to the Colorado Plateau? (2) Why is there disagreement between the apparent polar wander (APW) path constructed using poles from southwestern North America and the alternative path based on poles from eastern North America? Regarding (1), a 10.5° clockwise rotation of the Colorado Plateau about a pole located near 35°N, 102°W seems to fit the evidence best. Regarding (2), it appears that some rock units from the Appalachian region retain a hard overprint acquired during the mid-Cretaceous, when the geomagnetic field had constant normal polarity and APW was negligible.We found three well-defined small-circle APW tracks: 245–200 Ma (PEP at 39.2°N, 245.2°E, R=81.1°, root mean square error (RMS)=1.82°), 200–160 Ma (38.5°N, 270.1°E, R=80.4°, RMS=1.06°), 160 to 125 Ma (45.1°N, 48.5°E, R=60.7°, RMS=1.84°). Intersections of these tracks (the “cusps” of Gordon et al. [Tectonics 3 (1984) 499]) are located at 59.6°N, 69.5°E (the 200 Ma or “J1” cusp) and 48.9°N, 144.0°E (the 160 Ma or “J2” cusp). At these times, the absolute velocity of North America appears to have changed abruptly.North America absolute motion also changed abruptly at the beginning and end of the Cretaceous APW stillstand, currently dated at about 125 and 88 Ma (J. Geophys. Res. 97 (1992b) 19651). During this interval, the APW path degenerates into a single point, implying rotation about an Euler pole coincident with the spin axis.Using our PEP and cusp locations, we calculate the absolute motion of seven points on the North American continent. Our intention is to provide a chronological framework for the analysis of Mesozoic tectonics. Clearly, if APW is caused by plate motion, abrupt changes in absolute motion should correlate with major tectonic events. This follows because large accelerations reflect important changes in the balance of forces acting on the plate, the most important of which are edge effects (subduction, terrane accretion, etc.). Some tectonic interpretations: (1) The J1 cusp may be associated with the inception of rifting of North America away from land masses to the east; the J2 cusp seems to mark the beginning of rapid spreading in the North Atlantic. (2) The J2 cusp signals the beginning of a period of rapid northwestward absolute motion of western North America; motion of tectonostratigraphic terranes in the westernmost Cordillera seems likely to have been directed toward the south during this interval. (3) The interval 88 to 80 Ma saw a rapid decrease in the paleolatitude of North America; unless this represents a period of true polar wander, terrane motion during this time should have been relatively northward.  相似文献   

6.
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent–continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults.Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe–Carrizalillo, Ojinaga–Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America.Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia–Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.  相似文献   

7.
Secretinite—a maceral of the inertinite group as recognized by the ICCP in 1996—is a noncellular maceral of seed fern origin. New reflectance data indicate that this maceral has primary anisotropy with bireflectances of 0.4% to 0.9% in high-volatile B bituminous (Ro=0.6%) Carboniferous coal of North America. The highest reflectance is in cross-section as opposed to longitudinal section. Characteristic feature of secretinite is the virtual absence of Si and Al, unlike that in associated vitrinite. This indicates the absence of submicron aluminosilicates in secretinite and their presence in vitrinites. Secretinite is highly aromatic as indicated by low O/C ratios and high contribution of aromatic hydrogen bands detected by FTIR analysis.  相似文献   

8.
Oceanic crust west of North America at the beginning of the Jurassic belonged to the Kula plate. The development of the western margin of North America since the Jurassic reflects interaction with the Kula plate, the Kula-Farallon spreading center and the Farallon plate. The Kula plate ceased to exist in the Paleocene and later developments were caused by interaction of the Farallon plate and, subsequently, collision with the East Pacific Rise.At the beginning of the Jurassic, when spreading between North and South America began, the Kula-Farallon-Pacific triple junction moved to the north relative to North America, and the eastern end of the Kula-Farallon spreading center swept northwards along the continental margin.During the Paleocene, Kula-Pacific spreading ceased and the Kula plate fused to the Pacific plate. Throughout the Mesozoic, subduction of the Kula plate took place along the Alaskan continental margin. When the Kula plate joined the Pacific plate a new subduction zone formed along the line of the present Aleutian chain.Wrangellia and Stikinia, anomalous terrains in Alaska and northwestern Canada respectively, were emplaced by transport on the Kula plate from lower latitudes. Hypotheses which require transport of these plates in the Mesozoic from the “far reaches of the Pacific” ignore the problem of transport across either the Kula-Pacific or Kula-Farallon spreading centers. The interaction of the Kula plate and western North America throughout the Jurassic and the Cretaceous should result in emplacement of these terrains by motion oblique to the continental margin. Tethyan faunas in Stikinia must come from the western end of Tethys between North and South America, not the Indonesian region at the eastern end of Tethys.As the northeastern end of the Kula-Farallon ridge moved northward, the sense of motion changed from right lateral shear between the Kula and North American plates to collision or left lateral shear between the Farallon and North American plates. Left lateral shear along zones analogous to the Mojave-Sonora megashear may have been the means by which anomalous terrains were transported to the southeast into the gap between North and South America forming present day Central America. Such a model overcomes the overlap difficulties suffered in previous attempts to reconstruct the Mesozoic paleogeography of Central America.  相似文献   

9.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   

10.
Aeromagnetic surveys help reveal the geometry of Precambrian terranes through extending the mapping of structures and lithologies from well-exposed areas into areas of younger cover. Continent-wide aeromagnetic compilations therefore help extend geological mapping beyond the scale of a single country and, in turn, help link regional geology with processes of global tectonics. In Africa, India and related smaller fragments of Gondwana, the margins of Precambrian crustal blocks that have escaped (or successfully resisted) fracture or extension in Phanerozoic time can often be identified from their aeromagnetic expression. We differentiate between these rigid pieces of Precambrian crust and the intervening lithosphere that has been subjected to deformation (usually a combination of extension and strike-slip) in one or more of three rifting episodes affecting Africa during the Phanerozoic: Karoo, Early Cretaceous and (post-) Miocene. Modest relative movements between adjacent fragments in the African mosaic, commensurate with the observed rifting and transcurrent faulting, lead to small adjustments in the position of sub-Saharan Africa with respect to North Africa and Arabia. The tight reassembly of Precambrian sub-Saharan Africa with Madagascar, India, Sri Lanka and Antarctica (see animation in http://kartoweb.itc.nl/gondwana) can then be extended north between NW India and Somalia once the Early Cretaceous movements in North Africa have been undone. The Seychelles and smaller continental fragments that stayed with India may be accommodated north of Madagascar. The reassembly includes an attempt to undo strike-slip on the Southern Trans-Africa Shear System. This cryptic tectonic transcontinental corridor, which first formed as a Pan-African shear belt 700–500 Ma, also displays demonstrable dextral and sinistral movement between 300 and 200 Ma, not only evident in the alignment of the unsuccessful Karoo rifts now mapped from Tanzania to Namibia but also having an effect on many of the eventually successful rifts between Africa-Arabia and East Gondwana. We postulate its continuation into the Tethys Ocean as a major transform or megashear, allowing minor independence of movements between West Gondwana (partnered across the Tethys Ocean with Europe) and East Gondwana (partnered with Asia), Europe and Asia being independent before the 250 Ma consolidation of the Urals suture. The relative importance of primary driving forces, such as subduction ‘pull’, and ‘jostling’ forces experienced between adjacent rigid fragments could be related to plate size, the larger plates being relatively closely-coupled to the convecting mantle in the global scheme while the smaller ones may experience a preponderance of ‘jostling’ forces from their rigid neighbours.  相似文献   

11.
Migration-contamination occurs when a migrating or trapped crude oil functions as a solvent, dissolving molecular components from the syndepositional organic matter of the migration conduit and/or the reservoir rock. This review documents the causes and worldwide occurrences of migration-contamination, and suggests methods of identifying the signatures of this phenomenon within the molecular and isotopic composition of crude oils. Instances of migration-contamination have been identified in oils of Australia, Asia, Africa and North America, and are best identified by the presence of molecular and/or isotopic imbalances in the oil. Such imbalances are most apparent when co-occurring molecular suites are incompatible with one another, particularly in terms of thermal maturity. Occurrences of migration-contamination in oils of the US Gulf of Mexico—documented by molecular maturity imbalances such as the presence of unsaturated hydrocarbons known to be unstable at petroleum generation temperatures—provide the best examples of this phenomenon. An attempt is made to quantify the extent and impact of this process in the Vermilion 14 field, offshore Louisiana in the US Gulf of Mexico. Here, molecular maturity markers in the migrated fluid and in the syndepositional organic matter of the reservoir rocks are compared, and the proportion of contamination in each reservoired fluid is estimated. Examples such as this may assist in explaining maturity anomalies observed in several oils worldwide, particularly in Tertiary-reservoired oils that have migrated through, and are trapped in, thermally immature sediments. It is suggested that the low molecular maturity ratios often observed in Tertiary-reservoired oils and attributed to unusually high heating rates may be caused, at least in part, by migration-contamination.  相似文献   

12.
Crustal structures of the Central and Eastern Pyrenees are compared with those of the Alps and Carpathians. By analogy, northward subduction/underthrusting in the Central and Eastern Pyrenees is proposed. Southward subduction/underthrusting is found along the North Iberian margin and Western Pyrenees. Hence, a flip—a change in the direction of subduction/underthrusting—is postulated between the Central and Western Pyrenees.  相似文献   

13.
Upper-mantle velocity structure of the lower Great Lakes region   总被引:1,自引:0,他引:1  
The lithospheric root beneath North America contains a prominent indentation beneath the lower Great Lakes region that is approximately aligned with the track of the New England seamounts. By combining data from the recently installed POLARIS network in southern Ontario, Canada with data acquired in 1996 during the Abitibi–Grenville teleseismic experiment, we have performed a tomographic inversion using 4543 P-wave traveltimes from 213 events (5.0 ≤ mb ≤ 6.6), and 1860 S-wave traveltimes from 98 events (5.0 ≤ mb ≤ 6.6), to obtain high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3-D models are: 1) a patchy, NNW-trending low-velocity region, and 2) a linear, NE-striking high-velocity anomaly. S-wave images show that the low-velocity anomaly changes from an arcuate feature at 400-km depth, to a NW-striking linear feature at 100-km depth beneath the Neoproterozoic Ottawa–Bonnechere graben. The linear high-velocity anomaly extends to at least 300-km depth and strikes parallel to surface geological belts and the Laurentian continental margin. We interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.35–1.3 Ga subduction beneath the Composite Arc Belt, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. Our data support an interpretation of these plutons as melts generated by the passage of North America across a mantle plume, rather than a far-field response to opening of the North Atlantic.  相似文献   

14.
The Nigerian forest ecosystem has been undergoing drastic transformation, with far-reaching consequences on the socio-economic welfare of the areas concerned, if not of the entire national economy and society. This study is attempt at an assessment of the present state of scientific knowledge of those consequences in Nigeria. And with it as a baseline, efforts are underway to undertake in-depth studies particularly of the basic issues raised in this paper regarding human adjustments to the on-going transformations of the forest ecosystem — especially their social, cultural, spatial and economic effects.  相似文献   

15.
Recent field studies demonstrate the southern and northern parts of the Alpine fault to be dominantly under right-lateral shear. The central portion of this fault is dominantly under compression.The Marlborough—North Island dextral shear zone, together with the Fiordland and NW Nelson sinistral shear zones, demonstrate these shears to result from lateral drag within these zones and is only partially transmitted to the central section of the Alpine fault which is dominantly reverse in character.Regional extension in the North Island west of the shear belt and regional shortening in the South Island indicate clockwise rotation at the east side of the Alpine fault and its extension in the North Island relative to the west side about a “pole” on the Alpine fault in the north of the South Island.  相似文献   

16.
The latest Pleistocene—Holocene megafauna extinction is a global event, particularly dramatic in the Americas. In a previous paper the authors hypothesised a scenario for this extinction event in South America, where mastodonts first suffered from the changing climate environment, followed by the mylodonts and equids. These different latest Pleistocene—Holocene megafauna extinction “waves” in Ecuadorian Andes have been dated using 14C methods on material from selected sites in north and central Ecuadorian Interandean Depression. An outline of the physiographic evolution of the Interandean Depression in Ecuador is offered and the stratigraphic setting of the fossiliferous sites is discussed. The present results confirm the author's hypothesis on the megafauna extinction pattern, previously published in terms of relative age. The importance of climatic changes during Last Glacial Maximum at low latitudes is discussed.  相似文献   

17.
A review of current research on TL dating of loess   总被引:1,自引:0,他引:1  
The thick loess deposits of China, Central Europe and North America are particularly suitable for the application of the thermoluminescence (TL) dating method because individual grains are likely to have travelled large distances and thus been well exposed to light before deposition. Wind-blown silt grains collected close to glacial rivers in Alaska have been shown to give a ‘zero age’ of not more than 2 ka, demonstrating the efficiency of the zeroing mechanism.Differences in laboratory procedures can cause differences in the TL ages reported, particularly for loess over 100 ka. TL ages for interstadial soils in Europe are in agreement with the very few radiocarbon dates on reliable material, such as charcoal. On the other hand TL dates from sites in Belgium and north-western Germany indicate that the previously accepted chronology, which was based on two radiocarbon dates on humic-rich sediments, is incorrect.The use of the ‘last interglacial’ palaeosol for assessing the TL dates on loess above and below it is limited by the uncertainty in the timing of termination of soil-forming processes; 107 and 71 ka are the limits suggested by the astronomically-derived time scale. Results on deposits from China, North America, Alaska and Europe are discussed in this context.  相似文献   

18.
Miguel Muoz 《Tectonophysics》2005,395(1-2):41-65
The Wadati–Benioff Zone (WBZ) is an approximate plane defined by earthquakes hypocentres observed in convergent plate boundaries and that usually dips at angles greater than 30°. In some areas of the Andes, where there are gaps in volcanic activity, and where heat flow is abnormally low, this plane in most studies has nearly horizontal dip at a depth of about 75–100 km, and it has been associated to flat subduction of the oceanic lithosphere. This situation has been taken as the present-day analogue of the Laramide orogeny of western North America for which a ‘flat-slab’ episode has been proposed in the past years. In this work, the observed low heat flow in areas of the Andes is assumed to be due to low radiogenic heat generation in geologically old and allochthonous terranes constituting large regions of western South America. On the basis of geotherms obtained for areas of Ecuador, Peru, Chile and Argentina, and of rheological results describing the partition between brittle and ductile regimes, the seismic activity observed both in the lower crust and at depths of about 75–100 km is thoroughly explained. At these depths, earthquakes occur within the subcontinental upper mantle, and then there is no flat WBZ associated to subduction of the oceanic lithosphere. There is evidence from recent seismological observations that the real WBZ lies not horizontally and deeper in the tectonosphere.  相似文献   

19.
The Devonian-Carboniferous contact in southern South America, characterized by a sharp unconformity, has been related to the Late Devonian-Early Carboniferous Eo-Hercynian orogeny. The Calingasta-Uspallata basin of western Argentina and the Sauce-Grande basin (Ventana Foldbelt) of eastern Argentina have been selected to characterize this unconformity. The Eo-Hercynian movements were accompanied in western Argentina by igneous activity related to a Late Devonian—Early Carboniferous magmatic arc mainly exposed today along the Andean Cordillera. This magmatic activity is partly reflected also in eastern Argentina (Ventana Foldbelt), where isotopic dates suggest a thermal event also related to the intrusions present to the west in the North Patagonian Massif and Sierras Pampeanas. The scarcity of Lower Carboniferous deposits in the stratigraphic record of southern South America suggests that the Early Carboniferous was a time interval dominated by uplift and erosion followed by widespread subsidence during the Middle and Late Carboniferous. The origin of the Eo-Hercynian orogeny can be linked with the convergence between the Arequipa Massif, and its southern extension, and the South American continent. Its effects are best represented along the Palaeo-Pacific margin, although distant effects are discernible in the cratonic areas of eastern South America. Correspondence to: O. R. López-Gamundí  相似文献   

20.
The structure and tectonic style of Australia, to the north of the Musgrave Block and the southern Canning Basin and to the west of the Tasman Orogenic Province, are summarized.Northern Australia is largely occupied or underlain by the early Proterozoic North Australian Orogenic Province, which is bounded by younger mid-Proterozoic mobile belts of the Central Australian Orogenic Province along the eastern and southern margins. In the north, a basement of the Archaean West Australian Orogenic Province underlies the North Australian Orogenic Province. The strata of the North Australian Platform Cover were mildly to moderately deformed at the time when the mid-Proterozoic mobile belts were active. The late Proterozoic and Palaeozoic Central Australian Platform Cover developed over both the North and Central Australian Orogenic Provinces. Finally, the Mesozoic—Cainozoic Trans-Australian Platform Cover transgressed most of the region.The tectonic evolution of northern Australia can be clearly related to the times of cratonisation of its basement. A comparatively uniform pattern of major fractures, trending roughly northerly and northwest, was established throughout the region very early in its history. The subsequent evolution resulted from repeated reactivation of these fractures.Much of the structure may possibly be explained by a simple model in which a central block, roughly between the Kimberleys and Mount Isa, was displaced northwards relative to the blocks on either side and locally, the horizontal displacements were absorbed along east—west-trending zones of thrusting and folding, where the cover was crumpled against rigid blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号