首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Macroinvertebrates were sampled at 15 locations in the Iskar river basin in Bulgaria for the purpose of water quality assessment. Based on the chemical as well as the biological parameters, it was concluded that the water quality was still good upstream of Sofia, however, despite a huge waste water treatment plant, a strong decrease was observed when the river passed Sofia. Due to self-purification and dilution, a gradual amelioration of the water quality was observed 40 and 80 km downstream of Sofia, however, water quality was still insufficient. The Irish Biotic Index (IBI), which is currently used in Bulgaria for the national monitoring of macroinvertebrates for water quality assessment, does not fulfil the requirements of the European Union Water Framework Directive (WFD). The Multimetric Macroinvertebrate Index Flanders (MMIF), on the contrary, is a WFD compliant method developed for the northern part of Belgium, which is based on (1) the total number of taxa, (2) the number of Ephemeroptera, Plecoptera and Trichoptera taxa, (3) the number of other sensitive taxa, (4) the Shannon–Wiener index and (5) the mean tolerance score. The outcome of this MMIF was strongly correlated with the outcome of the Irish Biotic Index. Therefore, it should be possible to develop a similar multimetric index for macroinvertebrates to evaluate the biological water quality in Bulgaria without much effort.  相似文献   

2.
The European Water Framework Directive requires that member states assess all their surface waters based on a number of biological elements, including macroinvertebrates. Since 1989, the Flemish Environment Agency has been using the Belgian Biotic Index for assessing river water quality based on macroinvertebrates. Throughout the years, the Belgian Biotic Index has proven to be a reliable and robust method providing a good indication of general degradation of river water and habitat quality. Since the Belgian Biotic Index does not meet all the requirements of the Water Framework Directive, a new index, the Multimetric Macroinvertebrate Index Flanders (MMIF) for evaluating rivers and lakes was developed and tested. This index was developed in order to provide a general assessment of ecological deterioration caused by any kind of stressor, such as water pollution and habitat quality degradation. The MMIF is based on macroinvertebrate samples that are taken using the same sampling and identification procedure as the Belgian Biotic Index. The index calculation is a type-specific multimetric system based on five equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and Trichoptera taxa, number of other sensitive taxa, the Shannon-Wiener diversity index and the mean tolerance score. The final index value is expressed as an Ecological Quality Ratio ranging from zero for very bad ecological quality to one for very good ecological quality. The MMIF correlates positively with dissolved oxygen and negatively with Kjeldahl nitrogen, total nitrogen, ammonium, nitrite, total phosphorous, orthophosphate and biochemical and chemical oxygen demand. This new index is now being used by the Flemish Environment Agency as a standard method to report about the status of macroinvertebrates in rivers and lakes in Flanders within the context of the European Water Framework Directive.  相似文献   

3.
A new multimetric MMI_PL index, which is based on the macroinvertebrate composition and combines six single key metrics, has already been implemented in Poland according to the requirements of the EU Water Framework Directive. The objectives of our survey were to assess the biological water quality using the new multimetric MMI_PL index in both reference and human-impacted streams, to analyze whether the values of the new multimetric index properly reflect the ecological status of the water in upland and mountain streams as well as to determine which environmental factors influence the distribution of benthic macroinvertebrates and the values of the metrics. The study was carried out from 2007 to 2010 in three Ecoregions that were established by the EU WFD. A total of 60 sampling sites: 36 reference sites that were situated in the headwaters of mountain streams at mid- and high-altitudes and 24, human-impacted sampling sites were selected. The benthic macroinvertebrate surveys were supported by both a hydromorphological and macrophyte assessment according to the River Habitat Survey (RHS) and to the Macrophyte Methods for Rivers. Canonical correspondence analysis (CCA) showed that the values of the Habitat Quality Assessment (HQA) index, conductivity, pH and altitude were the parameters most associated (statistically significant) with the distribution of benthic macroinvertebrate taxa and the values of the metrics in both the reference and human-impacted (impaired) sections of the streams in Ecoregions 9, 10 and 14. The new MMI_PL index was useful for biological water quality assessment and was also important for separating both the reference and impaired sections of streams. The MMI_PL index and some key metrics performed contrary to what was expected in relation to the reference high-altitude siliceous streams (the High Tatra Mts., Ecoregion 10). Low values of multimetric index and key metrics did not properly reflect their high ecological status and pristine character as reflected by the hydromorphological (RHS) and macrophyte surveys or the physical and chemical parameters of the water.  相似文献   

4.
The Guayas river basin is one of the major watersheds in Ecuador, where increasing human activities are affecting water quality and related ecosystem services. The aims of this study were (1) to assess the ecological water quality based on macroinvertebrate indices and (2) to determine the major environmental variables affecting these macroinvertebrate indices. To do so, we performed an integrated water quality assessment at 120 locations within the river basin. Biological and physical–chemical data were collected to analyze the water quality. Two biotic indices were calculated to assess the water quality with an ecological approach: the Biological Monitoring Working Party Colombia (BMWP-Col) and the Neotropical Low-land Stream Multimetric Index (NLSMI). Both the BMWP-Col and NLSMI indicated good water quality at the (upstream) forested locations, lower water quality for sites situated at arable land and bad water quality at residential areas. Both indices gave relevant assessment outcomes and can be considered valuable for supporting the local water management. A correspondence analysis (CA) applied on both indices suggested that flow velocity, chlorophyll concentration, conductivity, land use, sludge layer and sediment type were the major environmental variables determining the ecological water quality. We also suggested that nutrient and pesticide measurements are important to study water quality in the area where intensive agriculture activities take place. The nutrient levels detected in agricultural areas were relatively low and illustrated that the types of crops and the current cultivation methods were not leading to eutrophication. The applied methods and results of this study can be used to support the future water management of the Guayas river basin and similar basins situated in the tropics.  相似文献   

5.
In the STAR/AQEM protocol microhabitats covering less than 5% of the sampling area were neglected. Driven by an ongoing discussion on the importance of these underrepresented microhabitats we tested the influence of sampling them. We investigated 48 streams representing 14 different stream types from all over Germany. Macroinvertebrates of underrepresented microhabitats were sampled in addition to the STAR/AQEM protocol. To ensure the method remains feasible in routine monitoring programmes the total sampling and sorting effort of additional sampling was limited to 20 min. Particularly those taxa were picked, which were not recognised during the routine STAR/AQEM sorting.To identify the effect of additional sampling on stream assessment results, we calculated the stream type-specific Multimetric Index (MMI) with the “main” and the “main+additional” data for each sample. The mean and median difference in MMI values between “main” and “main+additional” samples was 0.02 and 0.01, respectively. In seven of 48 samples (14.6%) a different ecological quality class was calculated with the “main+additional” dataset. Regarding common metrics within the MMI as well as intercalibration metrics differences between “main” and “main+additional” samples were analysed. The values differed most in richness metrics (e.g., number of EPTCBO Taxa, number of Trichoptera Taxa). The results of the present study show that additional sampling of underrepresented microhabitats could alter multimetric assessment results.  相似文献   

6.
Urban river systems are particularly sensitive to precipitation‐driven water temperature surges and fluctuations. These result from rapid heat transfer from low‐specific heat capacity surfaces to precipitation, which can cause thermally polluted surface run‐off to enter urban streams. This can lead to additional ecological stress on these already precarious ecosystems. Although precipitation is a first‐order driver of hydrological response, water temperature studies rarely characterize rain event dynamics and typically rely on single gauge data that yield only partial estimates of catchment precipitation. This paper examines three precipitation measuring methods (a statutory automatic weather station, citizen science gauges, and radar estimates) and investigates relationships between estimated rainfall inputs and subhourly surges and diurnal fluctuations in urban river water temperature. Water temperatures were monitored at 12 sites in summer 2016 in the River Rea, in Birmingham, UK. Generalized additive models were used to model the relationship between subhourly water temperature surges and precipitation intensity and subsequently the relationship between daily precipitation totals and standardized mean water temperature. The different precipitation measurement sources give highly variable precipitation estimates that relate differently to water temperature fluctuations. The radar catchment‐averaged method produced the best model fit (generalized cross‐validation score [GCV] = 0.30) and was the only model to show a significant relationship between water temperature surges and precipitation intensity (P < 0.001, R2 = 0.69). With respect to daily metrics, catchment‐averaged precipitation estimates from citizen science data yielded the best model fit (GCV score = 0.20). All precipitation measurement and calculation methods successfully modelled the relationship between standardized mean water temperature and daily precipitation (P < 0.001). This research highlights the potential for the use of alternative precipitation datasets to enhance understanding of event‐based variability in water quality studies. We conclude by recommending the use of spatially distributed precipitation data operating at high spatial (<1 km2) and temporal (<15 min) resolutions to improve the analysis of event‐based water temperature and water quality studies.  相似文献   

7.
Several studies have shown that fish assemblages are structured by habitat features, most of them have proposed that there is a positive relationship between habitat structural complexity and species diversity. In this study, we aimed to test this positive-relationship idea in three habitats types (creeks, oxbow lakes and river sandbanks) distributed along the Bita River Basin in South America. Standardized surveys were conducted during January and February of 2016 (low water period) in 30 sites distributed along the entire basin. We recorded 23,092 individuals representing 191 species. To investigate possible relationships between habitat structural complexity and species diversity, we calculated the first three Hill’s numbers, and performed a Non-metric Multidimensional Scaling (NMDS), a Principal Component Analysis (PCA) and a Canonical Correspondence Analysis (CCA). Our results showed that river sandbanks and creeks had the highest species richness. Results from the NMDS analysis (stress = 0.19) showed that fish community composition was different in the assessed habitats (ANOSIM < p = 0.001). According to the results of the principal component analysis, sand percentage, dissolved oxygen, and vegetation width separated river sandbanks from the other habitats. Results from the Hill’s numbers, forward selection procedure, and canonical correspondence analysis suggested that species composition and diversity were significantly influenced by the habitat structural complexity index and conductivity.  相似文献   

8.
We classified homogenous river types across Europe and searched for fish metrics qualified to show responses to specific pressures (hydromorphological pressures or water quality pressures) vs. multiple pressures in these river types. We analysed fish taxa lists from 3105 sites in 16 ecoregions and 14 countries. Sites were pre-classified for 15 selected pressures to separate unimpacted from impacted sites. Hierarchical cluster analysis was used to split unimpacted sites into four homogenous river types based on species composition and geographical location. Classification trees were employed to predict associated river types for impacted sites with four environmental variables. We defined a set of 129 candidate fish metrics to select the best reacting metrics for each river type. The candidate metrics represented tolerances/intolerances of species associated with six metric types: habitat, migration, water quality sensitivity, reproduction, trophic level and biodiversity. The results showed that 17 uncorrelated metrics reacted to pressures in the four river types. Metrics responded specifically to water quality pressures and hydromorphological pressures in three river types and to multiple pressures in all river types. Four metrics associated with water quality sensitivity showed a significant reaction in up to three river types, whereas 13 metrics were specific to individual river types. Our results contribute to the better understanding of fish assemblage response to human pressures at a pan-European scale. The results are especially important for European river management and restoration, as it is necessary to uncover underlying processes and effects of human pressures on aquatic communities.  相似文献   

9.
The lake monitoring programme compliant with the Water Framework Directive has been implemented in Poland since 2007. Currently, the methods for three biological quality elements (BQEs): phytoplankton (the Phytoplankton Multimetric for Polish Lakes, PMPL), macrophytes (the Ecological State Macrophyte Index, ESMI) and phytobenthos (the Diatom Index for Lakes, IOJ) are officially applied and internationally intercalibrated. Based on the monitoring data from 256 lakes surveyed in 2010–2013 and assessed for all the three BQEs, we tested whether the assessment results obtained by the three biological methods were consistent and we searched for the causes of inconsistencies which we found. The lake classifications obtained from the PMPL and ESMI were highly consistent and the relationship between these metrics was relatively strong (R = 0.66, p < 0.001). Both metrics correlated equally strongly with water quality indicators. However, the PMPL and ESMI indicated systematic dissimilarities in the sensitivity to eutrophication between shallow and deep lakes. In shallow lakes, the alarming symptoms of macrophyte community deterioration (lower values of ESMI) occurred at lower nutrient and Chla concentrations and were accompanied by a better status of phytoplankton (higher values of PMPL) than in deep lakes that can be explained by a synergistic effect of inorganic suspended solids and algal growth on water transparency. As a consequence, the positions of phytoplankton and macrophytes as early warning indicators in the eutrophication gradient in shallow lakes were inverted compared to those in deep lakes. Compared to the PMPL and ESMI, the IOJ method gave the least stringent assessment results, with 22% of lakes failing to meet the environmental objectives. The relationships between IOJ and PMPL, and ESMI were relatively weak (R = 0.17, p = 0.008 and R = 0.17, p = 0.007, respectively). Moreover, the phytobenthos index IOJ correlated significantly more weakly with all the water quality indicators than either PMPL or ESMI did. The poor performance of the phytobenthos method in this study may suggest a limited indicator value of this BQE for lake assessment or inappropriate sampling design.  相似文献   

10.
We present the process of developing a macrophyte based index (River Macrophyte Index – RMI) for assessing river ecological status, that would be applicable for rivers with moderate to high water alkalinity, flowing over low slope terrain. A reference value and boundary values were determined for five ecological classes. The relation between the developed index and two existing indices, the Reference Index (RI) and the Trophic Index of Macrophytes (TIM), and selected environmental variables was established. The RMI is based on species composition and abundance from 208 sampling sites being in reference or good hydromorphological conditions and differing in the catchment land use. The percentage of natural areas in the sub-catchment was used for classifying macrophyte taxa into 5 ecological groups. 65 plant taxa, of which 47 were identified as indicator taxa, were included in the analysis. To assess the ecological status of a river site, the presence of at least 3 indicator taxa is necessary, otherwise the assessment is considered inconclusive. RMI is expected to indicate multiple pressures on the river, including trophic level. The developed index and RI and TIM indices differed in relation to slope, distance to source and catchment size.  相似文献   

11.
In this study, we assessed the relationship between the occurrence of the invasive water hyacinth (Eichhornia crassipes) and water quality properties as well as macroinvertebrate diversity in a tropical reservoir, situated in western Ecuador. Macroinvertebrates and physico-chemical water quality variables were sampled at 32 locations (during the dry season of 2013) in both sites covered and non-covered by water hyacinth in the Daule-Peripa reservoir. The results indicated that, in terms of water quality, only turbidity was significantly different between sampling sites with and without water hyacinth (Mann–Whitney U-test, p < 0.01). The habitat suitability model showed that water hyacinth was present at sites with a low turbidity. The percentage water hyacinth cover increased with decreasing turbidity. The Biological Monitoring Working Party-Colombia score and the Margalef diversity index were significantly higher (Mann–Whitney U-test, p < 0.01) at sampling sites where water hyacinth was present compared to water hyacinth absent sites. However, there were no significant differences in the Shannon–Wiener index, Evenness index and Simpson index between the sampling sites with and without water hyacinth. Our results suggest that water hyacinth cover was an important variable affecting the diversity of macroinvertebrates in the Daule-Peripa reservoir, with intermediate levels of water hyacinth cover having a positive effect on the diversity of macroinvertebrates. Information on the habitat suitability of water hyacinth and its effect on the physico-chemical water quality and the macroinvertebrate community are essential to develop conservation and management programs for large tropical reservoirs such as the Daule-Peripa reservoir and the Guayas river basin, where water resources are being at high risk due to expansion of agricultural and industrial development activities.  相似文献   

12.
Freshwater ecosystems in the Indo-Burma biodiversity hotspot face immediate threats through habitat loss and species extinction. Systems to monitor ecological status and trends in biodiversity are therefore crucially needed. Myanmar is part of Indo-Burma but with no past experience of biomonitoring in freshwaters. In this study, we aimed to assess the ecological and biodiversity status of a lowland river network in south-central Myanmar by identifying and quantifying pressures using macroinvertebrates as bioindicators. Novel data on water quality (nutrients, sediments and metals), hydromorphology (Morphological Quality Index; MQI), habitat quality (Litter-Siltation Index; LSI), land use, and macroinvertebrates were collected from 25 river sites. The dominant pressures on rivers were urban land use, inputs of untreated sewage, in-stream and riparian garbage littering, run-off from agricultural fields and plantations, as well as physical habitat degradation. Water chemistry data indicated inputs of sediments and nutrients to degraded streams, but no obvious metal pollution. The LSI and MQI indices indicated high perturbation in agricultural and urban areas, respectively. Ecological status was assessed using a first version of a modified Average Score per Taxon index (ASPT), while biodiversity was assessed by family richness within the orders Ephemeroptera, Plecoptera, Trichoptera, Coleoptera and Odonata (EPTCO), which was tested against the pressure gradient by principal component regressions. ASPT had high diagnostic capabilities (R2 = 0.68, p < 0.001) and showed that the index can be used to evaluate ecological water quality in this region. Biodiversity, expressed as family richness, also declined along the gradient (R2 = 0.59, p = 0.041), giving support to the fact that current land-use practices in this area are unsustainable.  相似文献   

13.
A physical, chemical and biological characterization of river systems is needed to evaluate their ecological quality and support restoration programs. Herein, we describe an approach using water chemistry, physical structure and land use for identification of a disturbance gradient existing in the Karun River Basin. For this purpose, at each site, physical structure and physico-chemical data were collected once in each season for a total of 4 samples during the period (October 2018 - September 2019). Principal components analysis (PCA) of 17 variables identified five variables that were influential across all seasons: conductivity, total habitat score, stream morphology, clay & silt, and sand. Of the 54 sites, 14, 26 and 14 sites were classified as least, moderate and most disturbed sites, respectively. The metric Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa was used for validation of the classification. Results in different seasons showed that all the least disturbed sites (n = 14) were significantly different from moderate and most disturbed sites (p < 0.01). In this study the validation process presented good confirmation of a priori reference sites selection, showing that the proposed criteria could be considered as appropriate tools for characterization of the existent disturbance gradient in the Karun River Basin.  相似文献   

14.
The catchment land-use composition of 249 fish sampling sites in Austrian running waters revealed effects on the biological integrity. Beyond correlative analysis, we investigated (1) which land-use category had the strongest effect on fish, (2) whether metrics of functional fish guilds reacted differently, (3) whether there were cumulative effects of land-use categories, and (4) whether effects varied in strength across river types. We fed 5 land-use categories into regression trees to predict the European Fish Index or fish metric of intolerant species (mainly Salmo trutta fario). Agriculture and urbanisation were the best predictors and indicated significant effects at levels of >23.3 and >2%, respectively. Model performance was R 2 = 0.15 with the Fish Index and R 2 = 0.46 with intolerant species. The tree structure showed a cumulative effect from agriculture and urbanisation. For the intolerant species metric, a combination of high percentages for agriculture and urbanisation was related to moderate status, whereas <7.3% agriculture were related to good status, although urbanisation was higher than 1.8%. Headwater river types showed stronger responses to land use than river types of lower gradient and turned out to be more sensitive to urbanisation than agriculture.  相似文献   

15.
In the present study, a seasonal and non-seasonal prediction of the Standardized Precipitation Index (SPI) time series is addressed by means of linear stochastic models. The methodology presented here is to develop adequate linear stochastic models known as autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to predict drought in the Büyük Menderes river basin using SPI as drought index. Temporal characteristics of droughts based on SPI as an indicator of drought severity indicate that the basin is affected by severe and more or less prolonged periods of drought from 1975 to 2006. Therefore, drought prediction plays an important role for water resources management. ARIMA modeling approach involves the following three steps: model identification, parameter estimation, diagnostic checking. In model identification step, considering the autocorrelation function (ACF) and partial autocorrelation function (PACF) results of the SPI series, different ARIMA models are identified. The model gives the minimum Akaike Information Criterion (AIC) and Schwarz Bayesian Criterion (SBC) is selected as the best fit model. Parameter estimation step indicates that the estimated model parameters are significantly different from zero. Diagnostic check step is applied to the residuals of the selected ARIMA models and the results indicated that the residuals are independent, normally distributed and homoscedastic. For the model validation purposes, the predicted results using the best ARIMA models are compared to the observed data. The predicted data show reasonably good agreement with the actual data. The ARIMA models developed to predict drought found to give acceptable results up to 2 months ahead. The stochastic models developed for the Büyük Menderes river basin can be employed to predict droughts up to 2 months of lead time with reasonably accuracy.  相似文献   

16.
Gully erosion is an environmental concern particularly in areas where landcover has been modified by human activities. This study assessed the extent to which the potential of gully erosion could be successfully modelled as a function of seven environmental factors (landcover, soil type, distance from river, distance from road, Sediment Transport Index (STI), Stream Power Index (SPI) and Wetness Index (WI)) using a GIS-based Weight of Evidence Modelling (WEM) in the Mbire District of Zimbabwe. Results show that out of the studied seven factors affecting gully erosion, five were significantly correlated (p < 0.05) to gully occurrence, namely; landcover, soil type, distance from river, STI and SPI. Two factors; WI and distance from road were not significantly correlated to gully occurrence (p > 0.05). A gully erosion hazard map showed that 78% of the very high hazard class area is within a distance of 250 m from rivers. Model validation indicated that 70% of the validation set of gullies were in the high hazard and very high hazard class. The resulting map of areas susceptible to gully erosion has a prediction accuracy of 67.8%. The predictive capability of the weight of evidence model in this study suggests that landcover, soil type, distance from river, STI and SPI are useful in creating a gully erosion hazard map but may not be sufficient to produce a valid map of gully erosion hazard.  相似文献   

17.
《水文研究》2017,31(6):1283-1292
Flooding in the Mississippi basin has become increasingly uncertain, and a succession of progressively higher, peak annual water levels is observed at many sites. Many record levels set in the central USA by the huge 1993 flood have already been superseded. Methodology developed elsewhere that recognizes trends of river stages is used to estimate present‐day flood risk at 27 sites in the Mississippi basin that have >100 years of continuous stage record. Unlike official estimates that are fundamentally based on discharge, this methodology requires only data on river stage. A novel plot linearizes the official flood levels that are indirectly derived from the complex, discharge‐based calculations and demonstrates that the neglect of trends has resulted in the effective use of undersized means and standard deviations in flood risk analysis. A severe consequence is that official “base flood” levels are underestimated by 0.4 to 2 m at many sites in the central USA.  相似文献   

18.
The quality of digital elevation model (DEM)‐derived river drainage networks (RDNs) is influenced by DEM quality, basin physical characteristics, scale, and algorithms used; these factors should not be neglected. However, few research studies analyse the different evaluation approaches used in the literature with respect to adequacy, meaning of the results, advantages, and limitations. Focusing on coarse‐resolution networks, this paper reviews the use of these techniques and offers new insights on these issues. Additionally, we propose adaptations for selected metrics and discuss distinct interpretations for the evaluation of RDNs derived at different spatial resolutions (1, 5, 10, 20, and 30 km) considering the Uruguay River basin (206,000 km2) as a case study. The results demonstrate that lumped basin/river characteristics and basin delineation analysis should not be used as evaluation criteria for RDN quality; however, some of these metrics offer useful complementary information. Percentage of the DEM‐derived RDN within a uniform buffer placed around a river network considered as reference and mean separation distance between these two networks are more suitable metrics, but the former is insensitive to serious errors. The change in reference from a fine‐scale network to a coarse‐resolution manual tracing network significantly augments the discrepancy of these largest errors when the mean distance metric was applied, and visual comparison analysis is necessary to interpret the results for other metrics. We recommend the use of the mean distance metric in combination with a detailed visual assessment, the importance of which increases as the resolution coarsens. In both cases, the impact of network quality can be further refined by quantifying the basin shape and river length errors.  相似文献   

19.
Quantifying the uncertainty associated with monitoring protocols is essential to prevent the misclassification of ecological status and to improve sampling design. We assessed the Posidonia oceanica multivariate index (POMI) bio-monitoring program for its robustness in classifying the ecological status of coastal waters within the Water Framework Directive. We used a 7-year data set covering 30 sites along 500 km of the Catalonian coastline to examine which version of POMI (14 or 9 metrics) maximises precision in classifying the ecological status of meadows. Five factors (zones within a site, sites within a water body, depth, years and surveyors) that potentially generate classification uncertainty were examined in detail. Of these, depth was a major source of uncertainty, while all the remaining spatial and temporal factors displayed low variability. POMI 9 matched POMI 14 in all factors, and could effectively replace it in future monitoring programs.  相似文献   

20.
The assessment of ecological status of marine fish communities required by the marine strategy framework directive (MSFD) emphasises the need for fish-based ecological indices in marine waters. In this study we adapt five estuarine multimetric indices to the marine environment and apply them in three types of substrates, analysing the metrics responsible for the obtained patterns of ecological status. The results show inefficiency of the community degradation index (CDI) and the biological health index (BHI) in ecological status assessment and disagreement between the estuarine biotic integrity index (EBI), the estuarine fish community index (EFCI) and the transitional fish classification index (TFCI). Analysis of individual metrics suggests lack of representativeness and consideration for the particularities of each substrate’s typical fish communities. None of the tested indices were efficient on the marine environment, urging the need for new marine indices that account for differences between types of substrate and depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号