首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An Analytical Footprint Model For Non-Neutral Stratification   总被引:9,自引:6,他引:9  
We propose an analytical model for the so-called footprint of scalar fluxes in the atmospheric boundary layer. It is the generalization of formulations already given in the literature, which allows to account for thermal stability. Our model is only marginally more complicated than these, and it is therefore simple enough to be applicable for a routine footprint analysis within long-term measurements. The mathematical framework of our model is a stationary gradient diffusion formulation with height-independent crosswind dispersion. It uses the solution of the resulting two-dimensional advection – diffusion equation for power law profiles of the mean wind velocity and the eddy diffusivity. To find the adjoint Monin–Obukhov similarity profile, we propose two different approaches, a purely analytical one and a simplenumerical error minimalization.  相似文献   

2.
3.
In order to apply Monin–Obukhov similarity theory to estimatethe profiles of mean quantities and surface fluxes from bulk meteorological parameters, the assumptions of homogeneityand stationarity must be valid. Unfortunately, in coastal zones as well as many other regions of interest, theseassumptions are often violated. In this paper, an extension to the theory is presented that considers systematically varyingstate variables. Along-wind variations of windspeed, atmospheric stratification, and roughness are examined with respectto their relative importance to momentum flux divergence, and the drag coefficient is shown to be systematicallylower in coastal zones. For profiles of scalars, an analysis of the set of quasi-homogeneous terms is only speculated,and the relative importance for the terms will strongly depend on which scalar is of interest.  相似文献   

4.
Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.  相似文献   

5.
Turbulence Intensity Parameters over a Very Complex Terrain   总被引:1,自引:1,他引:0  
Detailed knowledge of turbulence structure is important for the understanding of atmospheric phenomena in the boundary layer, especially over complex terrain. In the present study, turbulence intensity parameters are analyzed for different conditions regarding stability, wind speed and wind direction over a mountainous region. The purpose of the analysis is to verify whether the observed parameters follow Monin–Obukhov similarity theory (MOST), despite the terrain heterogeneity. The dataset was collected during an experimental campaign at the Nova Roma do Sul site, in southern Brazil, with a micrometeorological tower located near a sharp slope, approximately 400 m high. The results show that the normalized standard deviations of the vertical velocity component as well as the normalized standard deviation of temperature follow Monin–Obukhov similarity for all stability regimes, regardless of the wind direction. However the normalized standard deviation of the horizontal components of the turbulent velocity obeys the similarity relationship only for a limited range of the stability parameters.  相似文献   

6.
Long-Term Mean Wind Profiles Based on Similarity Theory   总被引:1,自引:1,他引:0  
We provide general forms for long-term mean wind profiles from similarity-based wind profiles, beginning with a probabilistic adaptation of Monin–Obukhov similarity theory. We develop an analytical formulation for the stability distributions prevailing in the atmospheric surface layer, which in turn facilitates the derivation of a long-term mean wind profile based on Monin–Obukhov similarity theory. The modelled stability distributions exhibit good agreement with measurements from sites having different local conditions. The long-term wind profile formulation is further extended to include the influence of the depth of the atmospheric boundary layer (h), which becomes relevant for heights above h/3, and the resultant long-term ‘tall’ profile form also matches observations.  相似文献   

7.
Turbulent flux measurements both above and beneath the canopy of a boreal aspen forest are described. Velocity skewness showed that, beneath the aspen canopy, turbulence was dominated by intermittent, downward penetrating gusts. Eulerian horizontal length scales calculated from integration of the autocorrelation function or spectral peaks were 9.0 and 1.4 times the mean aspen height of 21.5 m respectively. Above-canopy power spectral slopes for all velocity components followed the -2/3 power law, whereas beneath-canopy slopes were closer to -1 and showed a spectral short cut in the horizontal and vertical components. Cospectral patterns were similar both above and beneath the canopy. The Monin–Obukhov similarity function for the vertical wind velocity variance was a well-defined function of atmospheric stability, both above and beneath the canopy. Nocturnal flux underestimation and departures of this similarity function from that expected from Monin–Obukhov theory were a function of friction velocity. Energy balance closure greater than 80% was achieved at friction velocities greater than 0.30 and 0.10 m s-1, above and below the aspen canopy, respectively. Recalculating the latent heat flux using various averaging periods revealed a minimum of 15 min were required to capture 90% of the 30-min flux. Linear detrending reduced the flux at shorter averaging periods compared to block averaging. Lack of energy balance closure and erratic flux behaviour led to the recalculation of the latent and sensible heat fluxes using the ratio of net radiation to the sum of the energy balance terms.  相似文献   

8.
We test a flexible, idealized mean wind profile for the loweratmosphere that can easily be matched to whatever windobservations may be available. Its intended function is to providea `best guess' wind profile from limited observations, e.g., foruse in dispersion models, and to this end, following earlierauthors, we have matched a Monin–Obukhov layer to a baroclinic Ekman layer.To demonstrate the flexibility of the two-layer wind profile, weoptimize its free parameters to provide best interpolative fits toa sample of multi-level wind profiles. These include model windprofiles extracted from the Canadian Global EnvironmentalMulti-scale weather model (GEM), as well as experimental profilesfrom the Wangara experiment, and from an over-ocean dispersionexperiment (LROD). In most cases the two-layer profile fit issatisfactory.  相似文献   

9.
Townsend's hypothesis states that turbulence near a wall can be divided into an activepart that transports momentum, and an inactive part that does not, and that these twokinds of turbulence do not interact. Active turbulence is generated by wind shear and has properties that scale on local parameters of the flow, while inactive turbulence isthe product of energetic processes remote from the surface and scales on outer-layerparameters. Both kinds of motion can be observed in the atmospheric surface layer, soMonin–Obukhov similarity theory, which is framed in terms of local parameters only,can apply only to active motions. If Townsend's hypothesis were wrong, so that activeand inactive motions do interact in some significant way, then transport processes nearthe ground would be sensitive to outer-layer parameters such as boundary-layer depth,and Monin–Obukhov theory would fail.Experimental results have shown that heat transport near the ground does depend onprocesses in the outer layer. We propose a mechanism for this whereby inactive motionsinitiate active, coherent ejection/sweep structures that carry much of the momentum andheat. We give evidence that the inactive motions take the form of streak patterns of fasterand slower air, and argue that these are induced by the pressure effects of large eddiespassing overhead. The streak pattern includes regions where faster streams of air overtakeand engulf slower-moving streaks. Transverse vortices form across the spines of the streaksat these places and some of them develop into horseshoe vortices. These horseshoe vorticesgrow rapidly and are rotated forward in the sheared flow so they soon contact the ground,squirting the air confined between the legs of the horseshoe vortex outwards as a forcefulejection. This model is consistent with a wide range of results from the field and laboratoryexperiments. Heat transport is significantly affected, so undermining the dimensionalassumptions of Monin–Obukhov similarity theory.  相似文献   

10.
In this paper, we consider boundary-layer effects on atmospheric fronts. For this purpose we developed a dry, hydrostatic, two-dimensional numerical model with turbulence parameterized with the 1/2 -order eddy viscosity closure of Mellor and Yamada. In the surface layer we use Monin–Obukhov similarity and there is an interactive soil model to obtain lower boundary conditions for the atmospheric model. First, effects of turbulence are studied without thermal forcing at the surface and comparisons are made between inviscid and turbulent conditions. Sensitivity studies with respect to surface roughness are also performed. Subsequently we study effects of surface thermal forcing on fronts. The results show that, during summer, fronts display strong diurnal variation. Vertical velocities increase significantly during the day while gradients in temperature and vorticity across the front strengthen in the evening and at night. In winter the diurnal variation is much less pronounced. We attempt to find physical mechanisms responsible for such frontal behaviour and we compare our results with available observations.  相似文献   

11.
Turbulent and mean meteorological data collected at five levels on a 20-m tower over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are analyzed to examine different regimes of the stable boundary layer (SBL). Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification. Scaling arguments and our analysis show that the SBL can be classified into four major regimes: (i) surface-layer scaling regime (weakly stable case), (ii) transition regime, (iii) turbulent Ekman layer, and (iv) intermittently turbulent Ekman layer (supercritical stable regime). These four regimes may be considered as the basic states of the traditional SBL. Sometimes these regimes, especially the last two, can be markedly perturbed by gravity waves, detached elevated turbulence (‘upside down SBL’), and inertial oscillations. Traditional Monin–Obukhov similarity theory works well in the weakly stable regime. In the transition regime, Businger–Dyer formulations work if scaling variables are re-defined in terms of local fluxes, although stability function estimates expressed in these terms include more scatter compared to the surface-layer scaling. As stability increases, the near-surface turbulence is affected by the turning effects of the Coriolis force (the turbulent Ekman layer). In this regime, the surface layer, where the turbulence is continuous, may be very shallow (< 5 m). Turbulent transfer near the critical Richardson number is characterized by small but still significant heat flux and negligible stress. The supercritical stable regime, where the Richardson number exceeds a critical value, is associated with collapsed turbulence and the strong influence of the earth’s rotation even near the surface. In the limit of very strong stability, the stress is no longer a primary scaling parameter.  相似文献   

12.
We document numerical experiments with a single-column, high-resolution model of the stable boundary layer. The model resolves the logarithmic layer, and does not require inverting the Monin–Obukhov similarity functions in order to calculate the surface fluxes. The turbulence closure is based on the K-theory approach, with a new form of stability functions of the Richardson number, evaluated by using the Surface Heat Budget of the Arctic Ocean (SHEBA) and the Cooperative Atmosphere-Surface Exchange Study (CASES-99) data. A comparison with two, high-resolution large-eddy simulation models shows very good agreement. The reported numerical experiments test the effects of shear, surface cooling, the Coriolis parameter, subsidence, and baroclinicity. The time evolution of the drag coefficient, the heat-transfer coefficient, and the cross-isobar angle is also evaluated.  相似文献   

13.
The gradient-based similarity approach removes turbulent fluxes as governing parameters and replaces them with vertical gradients of mean wind speed and potential temperature. As a result, the gradient Richardson number, Ri, appears as a stability parameter instead of the Monin–Obukhov stability parameter z/L (L is the Obukhov length). The gradient-based scaling is more appropriate for moderate and very stable conditions when the gradients are large and their errors are relatively small whereas z/L becomes ambiguous in these conditions because turbulent fluxes are small. However, the gradient-based formulation is faced with a problem related to the influence of Ri outliers: outliers with high values of Ri can exist in conditions that are really near-neutral. These outliers are mapped into the very stable range in plots in which Ri is the independent variable and may lead to spurious dependencies for bin-averaged data (spurious bin-averaging). This effect is quite large for functions that are steep for the gradient-based scaling. The present study uses the Surface Heat Budget of the Arctic Ocean (SHEBA) data to examine the problem and proposes two methods, conditional analysis and independent binning, to limit the influence of outliers on bin-averaging. A disadvantage of the conditional analysis is associated with eliminating outliers based on criteria that could be considered as subjective. The independent bin-averaging method does not have this disadvantage, but the scatter of the bin-averaged points is higher than for the conditional analysis, rendering data analysis and interpretation difficult.  相似文献   

14.
A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of grid turbulence and wall-bounded flow, the closure is also valid for homogeneous shear flows commonly observed inside tall vegetative canopies and in non-neutral atmospheric conditions. Here we examine the most often used two-equation models, namely and Eω (where is the dissipation rate of turbulent kinetic energy, E, and is the specific dissipation), comparing the suggested buoyancy-modified closure against Monin–Obukhov similarity theory. Assessment of the closure implementing both buoyancy and plant drag together has been done, comparing the results of the two models against each other. It has been found that the Eω model gives a better reproduction of complex atmospheric boundary-layer flows, including less sensitivity to numerical artefacts, than does the model. Re-derivation of the equation from the ω equation, however, leads to the model implementation that produces results identical to the Eω model. Overall, numerical results show that the closure performs well, opening new possibilities for application of such models to tasks related to the atmospheric boundary layer—where it is important to adequately account for the influences of both vegetation and atmospheric stability.  相似文献   

15.
The results of wind measurements taken in two studies at an urban sitein Birmingham (UK) are presented. Displacement heights and roughnesslengths are calculated that compare well with previous measurements inthe urban canopy. Dimensionless windshear and vertical-velocity standarddeviation are also shown to obey Monin–Obukhov similarity theory. Themean roughness lengths measured at the highest measuring position (45 m)increase with the fraction of upwind urban cover calculated using asource-area model.  相似文献   

16.
Data from a research tower in Lake Ontario are used to study the validity of Monin--Obukhov scaling in the marine atmospheric boundary layer under various wave conditions. It is found that over pure wind seas, the velocity spectra and cospectra follow established universal scaling laws. However, in the presence of swells outrunning weak winds, velocity spectra and cospectra no longer satisfy universal spectral shapes. Here, Monin–Obukhov similarity theory, and the classical logarithmic boundary layers, are no longer valid. It is further shown that, in the presence of such swells, the momentum flux can be significantly modified in comparison to pure wind sea values. The implications of these findings for bulk flux estimations and on the inertial dissipation method for calculating fluxes are discussed.  相似文献   

17.
Aerodynamic Variables in the Bulk Formulation of Turbulent Fluxes   总被引:1,自引:1,他引:0  
Aerodynamic variables are required to apply Monin–Obukhov similarity theory in the bulk formulation of surface fluxes. In the literature, these aerodynamic variables are commonly misinterpreted. In this paper, we review the concept of the aerodynamic variable, its connection to surface-layer similarity theory and how and why the aerodynamic variable is replaced with other variables.Observed mean variables below the surface layer, such as the surface radiation temperature, or the air temperature at canopy height, are often used in place of the extrapolated aerodynamic variables in the bulk formula, requiring empirical relationships between aerodynamic and observed variables, or requiring empirical adjustments of bulk resistances. The present study examines the validity of these relationshi Experiment (CODE). The results indicate that using a measured substitute for an aerodynamic variable can lead to significant errors in estimates of turbulent surface fluxes.  相似文献   

18.
Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.  相似文献   

19.
Based on the theoretical background of existing models for the crosswind-integrated footprint, a new model is presented, which, in contrast to the existing models, describes the normalized footprint by a closed analytical formula. This was made possible by using well-known power profiles for wind speed and eddy viscosity instead of Monin–Obukhov based profiles at a certain stage of model development. However, the major difference between the new model and the existing models is that the so-called shape parameter of vertical plume dispersion, a function of upwind distance in the existing models, is set constant in the new model in order to circumvent a formal inconsistency found in the derivation of the existing models. Due to this inconsistency, the existing models do not generally satisfy the fundamental condition that the cumulative normalized footprint must approach unity for the upwind distance tending towards infinity.  相似文献   

20.
Summary Hourly lysimetric and micrometeorological data taken over a grass surface at the Meteorological Research Unit, Cardington U.K. have been analysed. A temperature difference and measurements of wind speed at only one height, combined with an independently estimated effective roughness length allowed sensible heat and momentum fluxes determination by the profile method on an hourly basis. The estimates are compared with direct measurements of sensible heat and friction velocity obtained by the eddy correlation method. The sensible and latent heat fluxes are also modelled by the resistance method. Equations based on the Monin—Obukhov similarity theory are used to account for stability effects through various forms of parameterization Aerodynamic and surface resistances, necessary for the Penman—Monteith equation are calculated from routinely measured meteorological data. The profile method for estimation of sensible heat flux and friction velocity is found to work excellently on the discussed daytime experimental data which correspond mainly to near neutral or slightly unstable conditions.Surface latent and sensible heat fluxes can also be described very well by the resistance method. A slightly better estimate of the sensible heat flux is achieved when stability corrections are taken into account. On the contrary Penman-Monteith equation for estimating latent heat flux is insensitive to adjustments for atmospheric stability.The comparison of the various methods leads to the establishment of empirical relationships which correlate various quantities such as soil heat flux, resistances, evapotranspiration etc. to routinely measured meteorological data.With 8 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号