首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract– To constrain the effects of capture modification processes, the size distribution of nanoscale refractory Fe‐Ni‐S inclusions (“droplets”) was measured in five allocations extracted from throughout the depth of Stardust Track 35. The Fe/S ratio has been previously shown to increase significantly with penetration depth in this track, suggesting increasing capture‐related modification along the track. Astronomical image analysis tools were employed to measure the sizes of more than 8000 droplets from TEM images, and completeness simulations were used to correct the distribution for detection bias as a function of radius. The size distribution characteristics are found to be similar within independent regions of individual allocations, demonstrating uniformity within grains. The size distribution of the Fe‐Ni‐S droplets in each allocation is dominated by a mode near 11 nm, but is coarse‐skewed and leptokurtic with a mean of ~17 nm and a standard deviation of ~9 nm. The size distribution characteristics do not vary systematically with penetration depth, despite the strong trend in bulk Fe/S ratio. This suggests that the capture modification process is not primarily responsible for producing the morphology of these nanoscale droplets. The Stardust Track 35 droplet size distribution indicates slightly smaller sizes, but otherwise resembles those in carbonaceous chondrite Acfer 094, and chondritic porous interplanetary dust particles that escaped nebular annealing of sulfides. The size distribution of metal‐sulfide beads in Stardust’s quenched melted‐grain emulsions appears to be inherited from the size distribution of unmelted sulfide mineral grains in comet‐dust particles of chondritic character.  相似文献   

2.
Abstract– The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine‐grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica‐rich glassy clumps containing Fe‐Ni‐S inclusions, vesicles and “dust‐rich” patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine‐grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.  相似文献   

3.
Abstract— Three‐dimensional structures and elemental abundances of four impact tracks in silica aerogel keystones of Stardust samples from comet 81P/Wild 2 (bulbous track 67 and carrot‐type tracks 46, 47, and 68) were examined non‐destructively by synchrotron radiation‐based microtomography and X‐ray fluorescence analysis. Track features, such as lengths, volumes and width as a function of track depth, were obtained quantitatively by tomography. A bulbous portion was present near the track entrance even in carrot‐type tracks. Each impact of a cometary dust particle results in the particle disaggregated into small pieces that were widely distributed on the track walls as well as at its terminal. Fe, S, Ca, Ni, and eight minor elements are concentrated in the bulbous portion of track 68 as well as in terminal grains. It was confirmed that bulbous portions and thin tracks were formed by disaggregation of very fine fragile materials and relatively coarse crystalline particles, respectively. The almost constant ratio of whole Fe mass to track volume indicates that the track volume is almost proportional to the impact kinetic energy. The size of the original impactor was estimated from the absolute Fe mass by assuming its Fe content (CI) and bulk density. Relations between the track sizes normalized by the impactor size and impact conditions are roughly consistent with those of previous hypervelocity impact experiments.  相似文献   

4.
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe‐K X‐ray absorption spectroscopy with in situ transmission XRD and X‐ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light‐gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.  相似文献   

5.
Abstract— Many of the nanometer‐scale grains from comet 81P/Wild 2 did not survive hypervelocity capture. Instead, they melted and interacted with silica melt derived from the aerogel used by the Stardust mission. Their petrological properties were completely modified, but their bulk chemistry was preserved in the chemical signatures of mostly vesicular Si‐rich glass with its typical Fe‐Ni‐S compound inclusions. Chondritic aggregate IDP L2011A9 that experienced atmospheric pre‐entry thermal modification was selected as an analog to investigate these Wild 2 chemical signatures. The chemical, petrologic, and mineralogical properties of the individual constituents in this aggregate IDP are presented and used to match the chemical signatures of these Wild 2 grains. Mixing of comet material and pure silica, which is used in a diagram that recognizes this mixing behavior, is used to constrain the probable petrologic and minerals that caused the Wild 2 signatures. The Wild 2 nanometer‐scale grain signatures in Si‐rich glass allocations from three different deceleration tracks resembled mixtures of ultrafine‐grained principal components and dense agglomerate‐like material, Mg‐rich silicates (<500 nm) and Fe,Ni‐sulfides (<100 nm), and Si‐rich amorphous material. Dust resembling the mixed matrix of common chondritic aggregate IDPs was present in Jupiter‐family comet Wild 2.  相似文献   

6.
Dust from comet 81P/Wild 2 was captured at high speed in silica aerogel collectors during the Stardust mission. Studies of deceleration tracks in aerogel showed that a number of cometary particles were poorly cohesive and fragmented during impact. Fragments are now scattered along the walls of impact cavities. Here, we report a transmission electron microscope study of a piece of aerogel extracted from the wall of track 10. We focused on micron‐sized secondary tracks along which fragments of a fine‐grained material are disseminated. Two populations of fragments were identified. The first is made of polycrystalline silicate assemblages (olivine, pyroxene, and spinel) that appear to be chemically related to each other. The second corresponds to silica‐rich glassy clumps characteristic of a mixture of melted cometary material and aerogel. A significant number of fragments have been found with a composition close to chondritic CI for the major elements Fe‐Mg‐S at a submicron scale. These fragments have thus never been chemically differentiated by high‐temperature processes prior to the accretion on the comet, in contrast to terminal particles, which are dominated by larger, denser, and frequently monomineralic components.  相似文献   

7.
Abstract– The Stardust collector shows diverse aerogel track shapes created by impacts of cometary dust. Tracks have been classified into three broad types (A, B, and C), based on relative dimensions of the elongate “stylus” (in Type A “carrots”) and broad “bulb” regions (Types B and C), with occurrence of smaller “styli” in Type B. From our experiments, using a diverse suite of projectile particles shot under Stardust cometary encounter conditions onto similar aerogel targets, we describe differences in impactor behavior and aerogel response resulting in the observed range of Stardust track shapes. We compare tracks made by mineral grains, natural and artificial aggregates of differing subgrain sizes, and diverse organic materials. Impacts of glasses and robust mineral grains generate elongate, narrow Type A tracks (as expected), but with differing levels of abrasion and lateral branch creation. Aggregate particles, both natural and artificial, of a wide range of compositions and volatile contents produce diverse Type B or C shapes. Creation of bulbous tracks is dependent upon impactor internal structure, grain size distribution, and strength, rather than overall grain density or content of volatile components. Nevertheless, pure organic particles do create Type C, or squat Type A* tracks, with length to width ratios dependent upon both specific organic composition and impactor grain size. From comparison with the published shape data for Stardust aerogel tracks, we conclude that the abundant larger Type B tracks on the Stardust collector represent impacts by particles similar to our carbonaceous chondrite meteorite powders.  相似文献   

8.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

9.
Allocation FC6,0,10,0,26 from Stardust track 10 shows a slightly wavy silica glass/compressed silica aerogel interface exposing a patchwork of compressed silica aerogel domains and domains of silica glass with embedded Wild 2 materials in ultra‐thin TEM sections. This interface is where molten silica encountered compressed silica aerogel at temperatures <100 °C, and probably near room temperature, causing steep thermal gradients. An Mg, Fe‐olivine grain, and a plagioclase‐leucite intergrowth survived without melting in silica glass. A Mg‐, Al‐, Ca‐, K‐bearing silica globule moved independently as a single object. Two clusters of pure iron, low‐Ni iron, and low‐Ni, low‐sulfur Fe‐Ni‐S grains also survived intact and came to rest right at the interface between silica glass/compressed silica aerogel. There are numerous Fe‐Ni‐S nanograins scattered throughout MgO‐rich magnesiosilica glass, but compositionally similar Fe‐Ni‐S are also found in the compressed silica aerogel, where they are not supposed to be. This work could not establish how deep they had penetrated the aerogel. Iron nanograins in this allocation form core‐ring grains with a gap between the iron core and a surrounding ring of thermally modified aerogel. This structure was caused when rapid, thermal expansion of the core heated the surrounding compressed aerogel that upon rapid cooling remained fixed in place while the iron core shrank back to its original size. The well‐known volume expansion of pure iron allowed reconstruction of the quench temperature for individual core‐ring grains. These temperatures showed the small scale of thermal energy loss at the silica glass/compressed silica aerogel interface. The data support fragmentation of olivine, plagioclase, and iron and Fe ± low‐Ni grains from comet 81P/Wild 2 during hypervelocity capture.  相似文献   

10.
Abstract— We report analyses of aerogel tracks using (1) synchrotron X‐ray computed microtomography (XRCMT), (2) laser confocal scanning microscopy (LCSM), and (3) synchrotron radiation X‐ray fluorescence (SRXRF) of particles and their paths resulting from simulated hypervelocity impacts (1–2), and a single ~1 mm aerogel track from the Stardust cometary sample collector (1–3). Large aerogel pieces can be imaged sequentially, resulting in high spatial resolution images spanning many tomographic fields of view (‘lambda‐tomography’). We report calculations of energy deposited, and tests on aromatic hydrocarbons showing no alteration in tomography experiments. Imaging at resolutions from ~17 to ~1 micron/pixel edge (XRCMT) and to <100 nm/pixel edge (LCSM) illustrates track geometry and interaction of particles with aerogel, including rifling, particle fragmentation, and final particle location. We present a 3‐D deconvolution method using an estimated point‐spread function for aerogel, allowing basic corrections of LCSM data for axial distortion. LCSM allows rapid, comprehensive, non‐destructive, high information return analysis of tracks in aerogel keystones, prior to destructive grain extraction. SRXRF with LCSM allows spatial correlation of grain size, chemical, and mineralogical data. If optical methods are precluded in future aerogel capture missions, XRCMT is a viable 3D imaging technique. Combinations of these methods allow for complete, nondestructive, quantitative 3‐D analysis of captured materials at high spatial resolution. This data is fundamental to understanding the hypervelocity particle‐aerogel interaction histories of Stardust grains.  相似文献   

11.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

12.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   

13.
Abstract— Flight aerogel in Stardust allocation C2092,2,80,47,6 contains percent level concentrations of Na, Mg, Al, S, Cl, K, Ca, Cr, Mn, Fe, and Ni that have a distinctive Fe‐ and CI‐normalized distribution pattern, which is similar to this pattern for ppb level chemical impurities in pristine aerogel. The elements in this aerogel background were assimilated in non‐vesicular and vesicular glass with the numerous nanometer Fe‐Ni‐S compound inclusions. After correction for the background values, the chemical data show that this piece of comet Wild 2 dust was probably an aggregate of small (<500 nm) amorphous ferromagnesiosilica grains with many tiny Fe,Ni‐sulfide inclusions plus small Ca‐poor pyroxene grains. This distinctive Fe‐ and CI‐normalized element distribution pattern is found in several Stardust allocations. It appears to be a common feature in glasses of quenched aerogel melts but its exact nature is yet to be established.  相似文献   

14.
Abstract– Raman analyses were performed of individual micrometer‐sized fragments of material returned to Earth by the NASA Stardust mission to comet 81P/Wild 2. The studied fragments originated from grains (C2054,0,35,91,0 and C2092,6,80,51,0) of two different penetration tracks that occurred in two different silica aerogel collector cells. All fragments of both particles have Raman spectra characteristic of amorphous sp2‐bonded carbon that are in general agreement with the results published in previous Stardust particle studies. The present study, however, does not focus on the discussion of specific details of the D and G band parameters, but rather reports on additional information that can be obtained from returned Stardust samples via Raman spectroscopy. Most notably, the Raman spectra show that all analyzed fragments of the particles were contaminated with the capture medium (i.e., aerogel). The silica aerogel is laced with organic aliphatic and aromatic hydrocarbon impurities that resulted in strong bands in the ~ 2900 Δcm?1 spectral range (C‐H stretching modes). Aerogel bands are also found in the 1000–1600 Δcm?1 spectral range, where they overlap with the bands of the amorphous sp2‐bonded carbon. The peaks associated with the aerogel contamination differ between the two grains that originated from two different aerogel cells. In addition to the bands due to aerogel contamination and the always present sp2‐bonded carbon bands, fragments of particle C2092,6,80,51,0 also show Raman peaks for pyrrhotite and Fa30Fo70 olivine. Complete (up to 4000 Δcm?1) raw and baseline‐corrected Raman spectra of the Stardust particles are shown and discussed in detail.  相似文献   

15.
Abstract– The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s?1. We performed high‐resolution three‐dimensional imaging and X‐ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross‐sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron‐based X‐ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.  相似文献   

16.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

17.
Abstract– The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non‐silica aerogel in future extra‐terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100 μm glass microspheres to determine the suitability of different non‐silica aerogels as hypervelocity particle capture mediums. It was found that non‐silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.  相似文献   

18.
Abstract— Aerogel collectors have been used to capture cometary, interplanetary, and interstellar dust grains by NASA's Stardust mission, highlighting their importance as a scientific instrument. Due to the fragile and heterogeneous nature of cometary dust grains, their fragments are found along the walls of tracks that are formed during the capture process. These fragments appear to experience a wide range of thermal alteration and the causes of this variation are not well understood at a theoretical level as physical models of track formation are not well developed. Here, a general model of track formation that allows for the existence of partially and completely vaporized aerogel material in tracks is developed. It is shown that under certain conditions, this general track model reduces to the kinetic “snowplow” model that has previously been proposed. It is also shown, based on energetic considerations, that track formation is dominated by an expansion that is snowplow‐like in the later stages of track formation. The equation of motion for this snowplow‐like stage can be solved analytically, thus placing constraints on the amount of heating experienced by cometary dust fragments embedded in track walls. It is found that the heating of these fragments, for a given impact velocity, is expected to be greater for those embedded in larger tracks. Given the expected future use of aerogels for sample return missions, the results presented here imply that the choice of aerogel compositions can have a significant effect on the modification of samples captured and retrieved by these collectors.  相似文献   

19.
Abstract— It is reasonable to expect that cometary samples returned to Earth by the Stardust space probe have been altered to some degree during capture in aerogel at 6.1 km/s. In order to help interpret the measured structure of these particles with respect to their original cometary nature, a series of coal samples of known structure and chemical composition was fired into aerogel at Stardust capture velocity. This portion of the study analyzed the surfaces of aerogel‐embedded particles using Raman spectroscopy. Results show that particle surfaces are largely homogenized during capture regardless of metamorphic grade or chemical composition, apparently to include a devolatilization step during capture processing. This provides a possible mechanism for alteration of some aliphatic compound‐rich phases through devolatilization of cometary carbonaceous material followed by re‐condensation within the particle. Results also show that the possibility of alteration must be considered for any particular Stardust grain, as examples of both graphitization and amorphization are found in the coal samples. It is evident that Raman G band (~1580 cm?1) parameters provide a means of characterizing Stardust carbonaceous material to include identifying those grains which have been subjected to significant capture alteration.  相似文献   

20.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号