首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Hydrocode modeling of oblique impacts: The fate of the projectile   总被引:1,自引:0,他引:1  
Abstract— All impacts are oblique to some degree. Only rarely do projectiles strike a planetary surface (near) vertically. The effects of an oblique impact event on the target are well known, producing craters that appear circular even for low impact angles (>15° with respect to the surface). However, we still have much to learn about the fate of the projectile, especially in oblique impact events. This work investigates the effect of angle of impact on the projectile. Sandia National Laboratories' three‐dimensional hydrocode CTH was used for a series of high‐resolution simulations (50 cells per projectile radius) with varying angle of impact. Simulations were carried out for impacts at 90, 60, 45, 30, and 15° from the horizontal, while keeping projectile size (5 km in radius), type (dunite), and impact velocity (20 km/s) constant. The three‐dimensional hydrocode simulations presented here show that in oblique impacts the distribution of shock pressure inside the projectile (and in the target as well) is highly complex, possessing only bilateral symmetry, even for a spherical projectile. Available experimental data suggest that only the vertical component of the impact velocity plays a role in an impact. If this were correct, simple theoretical considerations indicate that shock pressure, temperature, and energy would depend on sin2θ, where θ is the angle of impact (measured from the horizontal). However, our numerical simulations show that the mean shock pressure in the projectile is better fit by a sin θ dependence, whereas shock temperature and energy depend on sin3/2 θ. This demonstrates that in impact events the shock wave is the result of complex processes that cannot be described by simple empirical rules. The mass of shock melt or vapor in the projectile decreases drastically for low impact angles as a result of the weakening of the shock for decreasing impact angles. In particular, for asteroidal impacts the amount of projectile vaporized is always limited to a small fraction of the projectile mass. In cometary impacts, however, most of the projectile is vaporized even at low impact angles. In the oblique impact simulations a large fraction of the projectile material retains a net downrange motion. In agreement with experimental work, the simulations show that for low impact angles (30 and 15°), a downrange focusing of projectile material occurs, and a significant amount of it travels at velocities larger than the escape velocity of Earth.  相似文献   

2.
E. PierazzoC.F. Chyba 《Icarus》2002,157(1):120-127
Jupiter's moon Europa may harbor an ocean beneath its ice cover, but the composition of that ocean and the overlying ice is nearly entirely unknown. Regardless of uncertainties in models for Europa's formation, we estimate lower limits for Europa's inventory of biogenic elements (such as C, N, O, and P) by investigating the contribution to the inventory of impact events over Europa's geologic history. A series of high-resolution hydrocode simulations were carried out over a range of comet densities (1.1, 0.8, and 0.6 g/cm3, corresponding to porosities between 0 and 45%) and impact velocities (16, 21.5, 26.5, and 30.5 km/s). We found that at typical impact velocities on Europa most impactor material reaches escape velocity, and it is assumed to be lost from Europa. For a nonporous comet, some fraction (20% or higher) of the projectile is retained by Europa even at the highest impact velocity modeled, 30.5 km/s. For porous comets, however, a significant fraction of the projectile (above 25%) is retained only for the lowest impact velocity modeled, 16 km/s. Integrated over solar system history, this suggests that 1 to 10 Gt of carbon could have been successfully delivered to Europa's surface by impacts of large comets (around 1 km in diameter). This is a few times more carbon than is contained in the procaryotic biomass of the upper 200 meters of the Earth's oceans, but about 2 orders of magnitude less if the whole depth of the oceans is considered. Therefore, regardless of its initial formation conditions, Europa should have a substantial inventory of “biogenic” elements, with implications for the chemistry of its oceans, ice cover, and the possibility of life.  相似文献   

3.
Vladimir Svetsov 《Icarus》2011,214(1):316-326
I have performed 3D numerical hydrodynamic simulations of impacts of stony projectiles on stony planar targets in a range of impact velocities from 1.25 to 60 km/s. The projectile and target masses ejected at speeds greater than some given values have been calculated. This provided a possibility to determine impact erosion of a target which undergoes bombardment with comparatively small bodies. The relative losses of target masses and masses of retained projectile material have been averaged over impact angles and approximated by analytical formulas as functions of impact and escape velocities. The balance between escaped material of a target and retained material of a projectile determines growth or reduction of a target mass. The target cratering erosion predominates over the projectile retention when the impacts have velocities of more than 3-5 times the escape velocity of a target. The results can be applied to collisions of planetary embryos with planetesimals, which have higher velocities than embryo-embryo impacts. Estimates for impact velocities 1-10 km/s show that while large embryos accrete planetesimals smaller embryos erode and can completely vanish or partly lose their silicate shells if they are differentiated. Application of calculated erosion efficiency to Mercury made it possible to test a hypothesis (Vityazev, A.V., Pechernikova, G.V., Safronov, V.S. [1988]. Formation of Mercury and removal of its silicate shell. In: Vilas, F., Chapman, C.R., Matthews, M.S. (Eds.), Mercury. Univ. Arizona Press., Tucson, pp. 667−669) that differentiated massive proto-Mercury has lost its mantle due to collisions with objects of moderate sizes. It turned out that in order for this to happen, relative collision velocities must exceed 25 km/s. As alternatives to the widely-known hypothesis of a giant impact on a massive proto-Mercury, other possibilities are considered, which do not require such high speeds. The first one is formation of a number of small-sized metal-rich embryos which lose their silicate shells due to cratering erosion. The second is that a small proto-Mercury was metallic and gained its mantle at the latest stage of its accumulation when it grew so large that the erosion became ineffective.  相似文献   

4.
The Campo del Cielo impact structure exhibits several penetration funnels and impact craters. Here, we model the formation of these funnels with pre-impact conditions consistent with the results of meteoroid entry models. We study vertical impacts to find the dependence of funnel geometry (depth, diameter) on impact velocity and target porosity. At velocities above 1 km s−1, we observe strong deformation of the projectile and transformation of funnels into regular impact craters. We also use 3-D impact models to study oblique impacts and find that in the case of impact angles <25° to the horizon, the projectile bounces off the target. Instead of a funnel, an elongated groove forms, while the fragmented projectile escapes and moves farther downrange. At steeper impact angles, funnels form with the projectile at its tip. Early interpretations of the Campo del Cielo impact angle at 9–10° were based on (i) an oversimplified atmospheric model allowing “correct” strewn field elongation and (ii) the results of excavation in which the sloping boundary between breccia-like materials and infilling loess was interpreted as a true crater floor and its slope was equated to the impact angle. As our models show, the projectile trajectory within the target is not a straight line, and the angle to horizon changes from a steep one at the impact point to zero and then to a negative value (the projectile is moving upward). We also model two impact craters (Hoyo de la Cañada and Laguna Negra) created by high-velocity fragments to demonstrate the projectile remnants ricochet in the downrange direction.  相似文献   

5.
Microrater frequencies caused by fast (? 3 km s?1) ejecta have been determined using secondary targets in impact experiments. A primary projectile (steel sphere, diam 1.58 mm, mass 1.64 × 10?2 g) was shot in Duran glass with a velocity of 4.1 km s?1 by means of a light gas gun. The angular distribution of the secondary crater number densities shows a primary maximum around 25°, and a secondary maximum at about 60° from the primary target surface. The fraction of mass ejected at velocities of ? 3 km s?1 is only a factor of 7.5 × 10?5 of the primary projectile mass. A conservative calculation shows that the contribution of secondary microcraters (caused by fast ejecta) to primary microcrater densities on lunar rock surfaces (caused by interplanetary particles) is on the statistical average below 1% for any lunar surface orientation. Calculation of the interplanetary dust flux enhancement caused by Moon ejecta turned out to be in good agreement with Lunar Explorer 35in situ measurements.  相似文献   

6.
Abstract– A Devonian siltstone from Orkney, Scotland, shows survival of biomarkers in high‐velocity impact experiments. The biomarkers were detected in ejecta fragments from experiments involving normal incidence of steel projectiles at 5–6 km s?1, and in projectile fragments from impact experiments into sand and water at 2–5 km s?1. The associated peak shock pressures were calculated to be in the range of 110–147 GPa for impacts of the steel projectiles into the siltstone target, and hydrocode simulations are used to show the variation of peak pressure with depth in the target and throughout the finite volume projectiles. Thermally sensitive biomarker ratios, including ratios of hopanoids and steranes, and the methylphenanthrene ratio, showed an increase in thermal maturity in the ejecta, and especially the projectile, fragments. Measurement of absolute concentrations of selected biomarkers indicates that changes in biomarker ratios reflect synthesis of new material rather than selective destruction. Their presence in ejecta and projectile fragments suggests that fossil biomarkers may survive hypervelocity impacts, and that experiments using biomarker‐rich rock have high potential for testing survival of organic matter in a range of impact scenarios.  相似文献   

7.
The contributions of lunar microcrater studies to understand the overall micrometeoroid environment are summarized and compared to satellite data.In comparison with small-scale laboratory studies, most lunar crater morphologies are compatible only with impact velocities > 3·5 km/sec and projectile densities between 1–8 g/cm3; a mean value is most likely 2–4 g/cm3. The particles arenon-porous and fairly equi-dimensional; needles, platelets, rods, whiskers and other highly asymmetric particle shapes can be excluded. Data on projectile chemistry is sparse and non-diagnostic at present.The crater diameters are converted into projectile masses via small scale laboratory impact experiments. Accordingly, the observed span of crater pit diameters (0·1 μm–1 cm) corresponds to a particle mass range of ≈ 10?15–10?3 g. This large, dynamic detection range is a unique feature of the lunar rock detector. Absolute crater densities on different rocks vary from “production” to “equilibrium” conditions. After normalization of such densities, relative microcrater size frequencies are obtained to deduce a mass frequency distribution for particles 10?15–10?3 g. There is evidence that this distribution is bimodal. A radiation pressure cutoff at 10?12 g particle mass does not exist. The micrometeoroid flux obtained from lunar rocks is compatible with satellite data. There is indication that the micrometeoroid flux may have been lower in the past. Some speculative astronomical consequences concerning the origin of micrometeoroids are discussed.  相似文献   

8.
Abstract– The MEMIN research unit (Multidisciplinary Experimental and Modeling Impact research Network) is focused on analyzing experimental impact craters and experimental cratering processes in geological materials. MEMIN is interested in understanding how porosity and pore space saturation influence the cratering process. Here, we present results of a series of impact experiments into porous wet and dry sandstone targets. Steel, iron meteorite, and aluminum projectiles ranging in size from 2.5 to 12 mm were accelerated to velocities of 2.5–7.8 km s?1, yielding craters with diameters between 3.9 and 40 cm. Results show that the target’s porosity reduces crater volumes and cratering efficiency relative to nonporous rocks. Saturation of pore space with water to 50% and 90% increasingly counteracts the effects of porosity, leading to larger but flatter craters. Spallation becomes more dominant in larger‐scale experiments and leads to an increase in cratering efficiency with increasing projectile size for constant impact velocities. The volume of spalled material is estimated using parabolic fits to the crater morphology, yielding approximations of the transient crater volume. For impacts at the same velocity these transient craters show a constant cratering efficiency that is not affected by projectile size.  相似文献   

9.
High-velocity comet and asteroid impacts onto the Moon are considered and the material masses ejected after such impacts at velocities above the second-cosmic velocity for the Moon (2.4 km/s) are calculated. Although the results depend on a projectile type and the velocity and angle of an impact, it has been demonstrated that, on average, the lunar mass decreases with time. The Moon has lost about 5 × 1018 kg, that is, about one-hundredth of a percent of its mass, over the last 3.8–3.9 billion years. The ejection of lunar meteorites and lunar dust, rich in 3He, is considered as well. The results of the study are compared to the results of earlier computations and data on lunar meteorites.  相似文献   

10.
Abstract— In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head‐on impact of a projectile 60 km in size at 3 km s?1. This estimate was based on simulations of fragmentation of non‐porous materials, while the family was assumed to be of C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non‐porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head‐on impact of a projectile 54 km in size at 3 km s?1. Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break‐up of a porous body leads to different outcomes than the disruption of a non‐porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.  相似文献   

11.
Abstract— Meteor Crater is one of the first impact structures systematically studied on Earth. Its location in arid northern Arizona has been ideal for the preservation of the structure and the surviving meteoric material. The recovery of a large amount of meteoritic material in and around the crater has allowed a rough reconstruction of the impact event: an iron object 50 m in diameter impacted the Earth's surface after breaking up in the atmosphere. The details of the disruption, however, are still debated. The final crater morphology (deep, bowl‐shaped crater) rules out the formation of the crater by an open or dispersed swarm of fragments, in which the ratio of swarm radius to initial projectile radius Cd is larger than 3 (the final crater results from the sum of the craters formed by individual fragments). On the other hand, the lack of significant impact melt in the crater has been used to suggest that the impactor was slowed down to 12 km/s by the atmosphere, implying significant fragmentation and fragments' separation up to 4 initial radii. This paper focuses on the problem of entry and motion through the atmosphere for a possible Canyon Diablo impactor as a first but necessary step for constraining the initial conditions of the impact event which created Meteor Crater. After evaluating typical models used to investigate meteoroid disruption, such as the pancake and separated fragment models, we have carried out a series of hydrodynamic simulations using the 3D code SOVA to model the impactor flight through the atmosphere, both as a continuum object and a disrupted swarm. Our results indicate that the most probable pre‐atmospheric mass of the Meteor Crater projectile was in the range of 4.108to 1.2.109kg (equivalent to a sphere 46–66 m in diameter). During the entry process the projectile lost probably 30% to 70% of its mass, mainly because of mechanical ablation and gross fragmentation. Even in the case of a tight swarm of particles (Cd < 3), small fragments can separate from the crater‐forming swarm and land on the plains (tens of km away from the crater) as individual meteorites. Starting from an impactor pre‐atmospheric velocity of ?18 km/s, which represents an average value for Earth‐crossing asteroids, we find that after disruption, the most probable impact velocity at the Earth's surface for a tight swarm is around 15 km/s or higher. A highly dispersed swarm would result in a much stronger deceleration of the fragments but would produce a final crater much shallower than observed at Meteor Crater.  相似文献   

12.
S. Yamamoto 《Icarus》2002,158(1):87-97
This paper reports the results of experiments on projectile impact into regolith targets at various impact angles. Copper projectiles of 240 mg are accelerated to 197 to 272 m s−1 using an electromagnetic gun. The ejecta are detected by thin Al foil targets as secondary targets, and the resulting holes on the foil are measured to derive the spatial distribution of the ejecta. The ejecta that penetrated the foil are concentrated toward the downrange azimuths of impacting projectiles in oblique impacts. In order to investigate the ejecta velocity distribution, the nondimensional volume of ejecta with velocities higher than a given value is calculated from the spatial distribution. In the case of the vertical impact of the projectile, most ejecta have velocities lower than 24% of the projectile speed (∼50 m s−1), and there are only several ejecta with velocities higher than 72 m s−1. This result confirms the existence of an upper limit to the ejection velocity in the ejecta velocity distribution (Hartmann cutoff velocity) (W. K. Hartmann, 1985, Icarus63, 69-98). On the other hand, it is found that, in the oblique impacts, there are a large number of ejecta with velocities higher than the Hartmann cutoff velocity. The relative quantity of ejecta above the Hartmann cutoff velocity increases as the projectile impact angle decreases. Taking these results with the results of S. Yamamoto and A. M. Nakamura (1997, Icarus128, 160-170) from impact experiments using an impact angle of 30°, it can be concluded that the ejecta from these regolith targets exhibit a bimodal velocity distribution. Below a few tens of m s−1, we see the expected velocity distribution of ejecta, but above this velocity we see a separate group of high-velocity ejecta.  相似文献   

13.
Hypervelocity microparticle impact experiments were performed with a 2 MV Van De Graaff dust accelerator. From measurements of the light intensity I and the total light energy E, the relations I=c1mv4.1 and E=c2mv3.2 were obtained, where m is the projectile mass, ν the projectile velocity and c1,c2 are constants, depending on projectile and target material. Using the measured values of the spectral distribution of the light emitted during impact, the temperature of the radiating material was estimated to be between 2500 and 5000 K depending on the projectile velocity. From an analysis of these measurements the angular distribution of secondary particle velocities as well as the relative mass distribution of these particles was determined. Approximately 90% of the detected ejecta mass (ν?1 km/sec) is found between 50° and 70° ejection angle. For ejection angles smaller than 20°, ejecta velocities of up to 30 km/sec were detected when the primary particle velocity was 4.8 km/sec. Using the dependence of the light intensity on pressure in the target chamber, an estimate of the total amount of material vaporized during impact could be derived. It was concluded that at 7.4 km/sec particle impact velocity at least 1.6% of the displaced projectile and crater material was vaporized.  相似文献   

14.
All planetary bodies with old surfaces exhibit planetary-scale impact craters: vast scars caused by the large impacts at the end of Solar System accretion or the late heavy bombardment. Here we investigate the geophysical consequences of planetary-scale impacts into a Mars-like planet, by simulating the events using a smoothed particle hydrodynamics (SPH) model. Our simulations probe impact energies over two orders of magnitude (2 × 1027-6 × 1029 J), impact velocities from the planet’s escape velocity to twice Mars’ orbital velocity (6-50 km/s), and impact angles from head-on to highly oblique (0-75°). The simulation results confirm that for planetary-scale impacts, surface curvature, radial gravity, the large relative size of the impactor to the planet, and the greater penetration of the impactor, contribute to significant differences in the geophysical expression compared to small craters, which can effectively be treated as acting in a half-space. The results show that the excavated crustal cavity size and the total melt production scale similarly for both small and planetary-scale impacts as a function of impact energy. However, in planetary-scale impacts a significant fraction of the melt is sequestered at depth and thus does not contribute to resetting the planetary surface; complete surface resetting is likely only in the most energetic (6 × 1029 J), slow, and head-on impacts simulated. A crater rim is not present for planetary-scale impacts with energies >1029 J and angles ?45°, but rather the ejecta is more uniformly distributed over the planetary surface. Antipodal crustal removal and melting is present for energetic (>1029 J), fast (>6 km/s), and low angle (?45°) impacts. The most massive impactors (with both high impact energy and low velocity) contribute sufficient angular momentum to increase the rotation period of the Mars-sized target to about a day. Impact velocities of >20 km/s result in net mass erosion from the target, for all simulated energies and angles. The hypothesized impact origin of planetary structures may be tested by the presence and distribution of the geochemically-distinct impactor material.  相似文献   

15.
Abstract— We present numerical calculations of the peak temperatures experienced by micrometeorites during atmospheric entry. Results are given for particle diameters between 2 and 50 μm and for entry velocities between 10 and 25 km/s. A material density of 2 g/cm3 and an entry angle of 45° are used for the calculation, but the results presented here can be easily reinterpreted for other densities and for vertical entry.  相似文献   

16.
Abstract— The Vredefort structure in South Africa was created by a meteorite impact about two billion years ago. Since that time, the crater has been deeply eroded; so to estimate its original size, researchers have had to rely heavily upon comparison to other terrestrial impact structures. Recent estimates of the original crater diameter range from 160 km to as much as 400 km. In this study, we combined the capabilities of both hydrocode and finite-element modeling, using the former to predict where the pressure of an impact-generated shock wave would have been high enough to form planar deformation features (PDFs) and shatter cones and the latter to follow the subsequent displacement of these shock isobars during the collapse of the crater. We established constraints on the sizes of the projectile and the transient crater (and, thus, on the size of the final crater) by comparing the observed locations of PDFs around Vredefort to the results of our simulations of impacts by projectiles of various sizes. These simulations indicate that a rocky projectile with a diameter of ~10 km, impacting vertically at a velocity of 20 km/s generates shock pressures that are consistent with the distribution of PDFs around Vredefort. These projectile parameters correspond to a transient crater ~80 km in diameter or a final crater ~120–160 km in diameter. Allowing for uncertainties in our modeling procedures, we consider final craters 120 to 200 km in diameter to be consistent with the observed locations of PDFs at Vredefort. The shock pressure contour corresponding to the formation of shatter cones is almost horizontal near the surface, making the locations of these features less useful constraints on the crater size. However, they may provide a constraint on the amount of erosion that has occurred since the impact.  相似文献   

17.
The Morasko strewn field located near Poznań, Poland comprises seven impact craters with diameters ranging from 20 to 90 m, all of which were formed in glacial sediments around 5000 yr ago. Numerous iron meteorites have been recovered in the area and their distribution suggests a projectile with the trajectory from NE to SW. Similar impact events producing crater strewn fields on average happen every 500 yr and pose a serious risk for modern civilization, which is why it is of utmost importance to study terrestrial strewn fields in detail. In this work, we investigate the Morasko meteoroid passage through the atmosphere, the distribution of its fragments on the ground, and the process of forming individual craters by means of numerical modeling. By combining atmospheric entry modeling, Pi‐group scaling of transient crater size and hydrocode simulations of impact processes, we constructed a comprehensive model of the Morasko strewn field formation. We determined the preatmospheric parameters of the Morasko meteoroid. The entry mass is between 600 and 1100 tons, the velocity range is between 16 and 18 km s?1, and the trajectory angle is 30–40°. Such entry velocities and trajectory angles do not deviate from typical values for near‐Earth asteroids, although the initial mass we determined can be considered as small. Our studies on velocities and masses of crater‐forming fragments showed that the biggest Morasko crater was formed by a projectile about 1.5 m in diameter with the impact velocity ~10 km s?1. Environmental consequences of the Morasko impact event are very localized.  相似文献   

18.
Abstract– The extra‐large light‐gas gun (XLLGG) at the Fraunhofer Ernst‐Mach‐Institut (EMI, Efringen‐Kirchen, Germany) is a two‐stage light‐gas gun that can accelerate projectile masses of up to 100 g up to velocities of 6 km s?1. The accelerator’s set‐up allows various combinations of pump and launch tubes for applications in different fields of hypervelocity impact research. In the framework of the MEMIN (Multidisciplinary Experimental and Modeling Impact Research Network) program, the XLLGG is used for mesoscale cratering experiments with projectiles made of steel and of iron meteorites, and targets consisting of sandstone and other rocks. The craters produced with this equipment reach a diameter of up to 40 cm, a size unique in laboratory cratering research. With the implementation of neural networks, the acceleration process is being optimized, currently yielding peak velocities of 7.8 km s?1 for a 100 g projectile. Here, we summarize technical aspects of the XLLGG.  相似文献   

19.
Abstract— Hadley Rille is a millimeter-size EH chondrite containing euhedral and acicular enstatite grains, kamacite globules and preferentially aligned silicate aggregates separated by elongated kamacite-rich patches. The Hadley Rille chondrite was significantly impact melted when it accreted to the lunar regolith at relative velocities of ~>3 km s?1; ~65–75% of the chondrules present initially were melted. During the impact, portions of the local regolith were melted and an agglutinate-like rim formed around the chondritic projectile; the rim consists of flow-banded vesicular glass, blebs of troilite and low-Ni metallic Fe, rock fragments, glass(?) shards, and mineral grains. The mineral grains include enstatite (which is otherwise absent from the Moon and must have been derived from the projectile) and poorly characterized, micrometer-size phases enriched in light rare-earth-elements (LREE), which probably formed during the impact. Several of the rock fragments contain <33 mg/g Cl, which was probably derived through impact-induced volatilization of Cl from chondrule mesostases in the EH projectile.  相似文献   

20.
Collisions between planetary ring particles and in some protoplanetary disk environments occur at speeds below 10 m/s. The particles involved in these low-velocity collisions have negligible gravity and may be made of or coated with smaller dust grains and aggregates. We undertook microgravity impact experiments to better understand the dissipation of energy and production of ejecta in these collisions. Here we report the results of impact experiments of solid projectiles into beds of granular material at impact velocities from 0.2 to 2.3 m/s performed under near-weightless conditions on the NASA KC-135 Weightless Wonder V. Impactors of various densities and radii of 1 and 2 cm were launched into targets of quartz sand, JSC-1 lunar regolith simulant, and JSC-Mars-1 martian regolith simulant. Most impacts were at normal or near-normal incidence angles, though some impacts were at oblique angles. Oblique impacts led to much higher ejection velocities and ejecta masses than normal impacts. For normal incidence impacts, characteristic ejecta velocities increase with impactor kinetic energy, KE, as approximately KE0.5. Ejecta masses could not be measured accurately due to the nature of the experiment, but qualitatively also increased with impactor kinetic energy. Some experiments were near the threshold velocity of 0.2 m/s identified in previous microgravity impact experiments as the minimum velocity needed to produce ejecta [Colwell, J.E., 2003. Icarus 164, 188-196], and the experimental scatter is large at these low speeds in the airplane experiment. A more precise exploration of the transition from low-ejecta-mass impacts to high-ejecta-mass impacts requires a longer and smoother period of reduced gravity. Coefficient of restitution measurements are not possible due to the varying acceleration of the airplane throughout the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号