首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对取自赣南地区10个温泉的地热气体进行了气体化学成分及氦、碳、氖同位素组成的分析。该区地热气体可分为CO2型和N2型两种类型。CO2型地热气体分布在赣南东南部地区,主要成分是CO2,占总体积96.47%以上,二氧化碳气体的δ13C值为 -5.50‰~-3.49‰(PDB),平均为 -4.66‰,为幔源无机成因,其氦同位素组成为1.36~2.27 Ra,具有明显的幔源成因特征,最高约有28.2%的氦源于地幔,其N2-Ar-He关系研究表明,该型地热气体中的氮源于地幔-地壳-大气混合成因。研究揭示该区CO2型地热气体属幔源无机成因气,是地幔脱气作用的产物。N2型地热气体分布在赣南西部地区,N2含量占91.04%以上,其中二氧化碳气体的δ13C值为 -23.7‰~-12.6‰,平均为 -17.82‰,为壳源有机成因,其氦同位素组成为0.06~0.13 Ra,具有明显的壳源放射性成因特征,3He/4He 与 4He/20Ne关系和He-Ar-N2关系研究表明,N2型温泉气主要来源于大气,并有壳源气体的贡献。  相似文献   

2.
3.
Mantle helium in Sacramento basin natural gas wells   总被引:16,自引:0,他引:16  
Helium isotope ratios in Sacramento basin natural gas wells show a strong mantle signal. The 3He/4He ratios range from 0.11 times the atmospheric ratio (0.11 RA) in the Rio Vista field to 2.75 RA in the Moon Bend field, indicating that 1% to 34% of the helium is mantle-derived. 3He/4He versus CH4/4He ratios provide evidence of two-component mixing between crustal and magmatic end-members. Extrapolation of the linear regression line to CH4/4He = 0 gives a hypothetical magmatic end-member 3He/4He ratio of 3.84 RA, half the typical mantle ratio. This indicates that the magmatic end-member may actually represent a mixture of mantle and crustal helium. Gases which deviate from the simple two-component mixture can be explained by addition of pure methane, radiogenic 4He, or a high N2-He component with 3He/4He = 0.6 Ra to 1.0 RA. The CH4/3He ratio of the magmatic end-member remains poorly constrained (0 to 3 × 109) and one cannot rule out the possibility that a significant proportion of the methane in some fields may be of deep-earth origin. However, fields with the highest 3He/4He ratios are associated with buried Plio-Pleistocene intrusives which have up-arched sediments to form hydrocarbon traps. The methane in these fields may have been produced by rapid thermal alteration of the intruded sediment. Elsewhere, the methane appears either to have migrated from deeply-buried sediments in the western basin or to have been produced by local microbial activity.  相似文献   

4.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   

5.
The significance of isotopic data on constraining the physical conditions of fluid-rock interaction and mineralization processes in carbonate rocks is discussed, based on the example of barite-tetrahedrite mineralization in Lower Devonian platform carbonates of the Western Greywacke Zone (Tyrol, Austria). Available strontium, oxygen, carbon and sulfur isotopic data are complemented with oxygen isotopic data for barite. Barites are homogeneous in δ18OV-SMOW and δ34SCDT with values of + 15.4 and + 23.5‰, respectively. Their 87Sr/86Sr ratios vary between 0.7128 and 0.7113 for the first generation and between 0.7117 and 0.7123 for younger remobilization. The dolomitic host rock shows a significant variation in Sr, O and C isotopic composition between non-mineralized and mineralized zones: 87Sr/86Sr ratios vary between 0.7076 and 0.7133, δ18OV-SMOW-values between +28.11 and +20.65‰, and δ13CPDB-values between −1.15 and + 3.06‰. Fluid/rock volume ratios on the order of 1.3–3.2 are calculated for open-system behaviour by modelling Sr, O and C isotopic shifting capacities. The isotope data combined with other geological evidence support the following genetic model: Subsequent to synsedimentary sulfide mineralization during an Early Devonian rifting stage, collision tectonics in Carboniferous time led to the expulsion of Ba- and Sr-rich orogenic brines, which evolved from metamorphic fluids consisting essentially of H2O and some CH4, into an external sedimentary fold-and-thrust belt. The brines remobilized the synsedimentary sulfides, mixed with meteoric waters in the platform carbonates, reacted with evaporitic horizons and finally caused the recrystallization of dolomite and the precipitation of Sr-rich barite in structurally weak zones at 70–130°C. During the later Alpine orogeny supergene oxidation products were formed, and sulfates, sulfides and carbonates were further remobilized into late faults and fractures.  相似文献   

6.
There are two types of gneisses, biotite paragneiss and granitic orthogneiss, to be closely associated with UHP eclogite at Shuanghe in the Dabie terrane. Both concentration and isotope composition of bulk carbon in apatite and host gneisses were determined by the EA-MS online technique. Structural carbonate within the apatite was detected by the XRD and FTIR techniques. Significant 13C-depletion was observed in the apatite with δ13C values of −28.6‰ to −22.3‰ and the carbon concentrations of 0.70–4.98 wt.% CO2 despite a large variation in δ18O from −4.3‰ to +10.6‰ for these gneisses. There is significant heterogeneity in both δ13C and δ18O within the gneisses on the scale of several tens meters, pointing to the presence of secondary processes after the UHP metamorphism. Considerable amounts of carbonate carbon occur in some of the gneisses that were also depleted in 13C primarily, but subjected to overprint of 13C-rich CO2-bearing fluid after the UHP metamorphism. The 13C-depleted carbon in the gneisses is interpreted to be inherited from their precursors that suffered meteoric–hydrothermal alteration before plate subduction. Both low δ13C values and structural carbonate in the apatite suggest the presence of 13C-poor CO2 in the UHP metamorphic fluid. The 13C-poor CO2 is undoubtedly derived from oxidation of organic matter in the subsurface fluid during the prograde UHP metamorphism.

Zircons from two samples of the granitic orthogneiss exhibit low δ18O values of −4.1‰ to −1.1‰, demonstrating that its protolith was significantly depleted in 18O prior to magma crystallization. U–Pb discordia datings for the 18O-depleted zircons yield Neoproterozoic ages of 724–768 Ma for the protolith of the granitic orthogneiss, consistent with protolith ages of most eclogites and orthogneisses from the other regions in the Dabie–Sulu orogen. Therefore, the meteoric–hydrothermal alteration is directly dated to occur at mid-Neoproterozoic, and may be correlated with the Rodinia supercontinental breakup and the snowball Earth event. It is thus deduced that the igneous protolith of the granitic orthogneiss and some eclogites would intrude into the older sequences composing the sedimentary protoliths of the biotite paragneiss and some eclogites along the northern margin of the Yangtze plate at mid-Neoproterozoic, and drove local meteoric–hydrothermal circulation systems in which both 13C- and 18O-depleted fluid interacted with the protoliths of these UHP rocks now exposed in the Dabie terrane.  相似文献   


7.
Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87Sr/86Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l−1, and 87Sr/86Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l−1), although the 87Sr/86Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ18O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l−1, but 87Sr/86Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups.

All of the fluids have 87Sr/86Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth.

These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.  相似文献   


8.
The fractionation of boron isotopes between synthetic boromuscovite and fluid was experimentally determined at 3.0 GPa/500 °C and 3.0 GPa/700 °C. For near-neutral fluids Δ11B(mica-fluid) = δ11B(mica) − δ11B(fluid) is − 10.9 ± 1.3‰ at 500 °C, and − 6.5 ± 0.4‰ at 700 °C. This supports earlier assumptions that the main fractionation effect is due to the change from trigonal coordination of boron in neutral fluids to tetrahedrally coordinated boron in micas, clays and melts. The T-dependence of this effect is approximated by the equation Δ11B(mica,clay,melt–neutral fluid) = − 10.69 · (1000/T [K]) + 3.88; R2 = 0.992, valid from 25 °C for fluid–clay up to about 1000 °C for fluid–silicate melt. Experiments at 0.4 GPa that used strongly basic fluids produced significantly lower fractionations with Δ11B(mica–fluid) of − 7.4 ± 1.0‰ at 400 °C, and − 4.8 ± 1.0‰ at 500 °C, showing the reduced fractionation effect when large amounts of boron in basic fluids are tetrahedrally coordinated. Field studies have shown that boron concentrations and 11B/10B-ratios in volcanic arcs systematically decrease across the arc with increasing distance from the trench, thus reflecting the thermal structure of the subducting slab. Our experiments show that the boron isotopic signature in volcanic arcs probably results from continuous dehydration of micas along a distinct PT range. Continuous slab dehydration and boron transport via fluid into the mantle wedge is responsible for the boron isotopic signature in volcanic arcs.  相似文献   

9.
P. Deines  J.W. Harris 《Lithos》2004,77(1-4):125-142
Carbon isotope measurements on diamonds from the Letlhakane kimberlite, and the analyses of their inclusions, permit the examination of km-scale mantle-composition variations by comparing the results with those for the nearby Orapa kimberlite. Diamonds from Letlhakane have a wide range in carbon isotopic composition (−3‰ to −21‰); however, the relative abundance of diamonds depleted in 13C is significantly lower than in the Orapa kimberlite. Most of the 13C-depleted diamonds belong to the eclogictic or websteritic paragenesis. The relative abundance of inclusions in diamonds and their composition indicate that there are significant differences in petrology in the mantle below the two locations. At Letlhakane, peridotitic compositions are more prevalent than at Orapa and the protolith of P-Type inclusions in diamonds may have experienced a higher degree of partial melting at Letlhakane compared to Orapa. P/T estimates for both W- and E-Type diamonds indicate that a region of 13C-depletion may exist beneath the two kimberlites. The relationships between carbon isotopic composition of the host diamond and the Al2O3/Cr2O3 ratios of their websteritic and eclogitic garnet inclusions indicate that the low δ13C regions may represent a primary mantle feature, unrelated to a crustal component.  相似文献   

10.
H. Albert Gilg   《Chemical Geology》2000,170(1-4):5-18
The δDSMOW values of sedimentary kaolins from the western border of the Bohemian Massif, northeast Bavaria, that did not suffer a deep burial (less than 1000 m) nor a hydrothermal overprint, change systematically from Late Triassic (−50‰) to Mid-Jurassic and Late Cretaceous (−56‰ to −66‰) to Upper Oligocene–Mid-Miocene (−77‰ to −90‰). All analyzed clays are far from hydrogen isotope equilibrium with present-day meteoric waters. Combined oxygen and hydrogen isotope data of selected samples indicate low temperatures of formation (<30°C) and no evidence for preferential D/H exchange with younger waters. The hydrogen isotopic evolution of kaolins is interpreted as reflecting a systematic isotopic change of paleo-meteoric waters in that region. This can be related mainly to the northward drift of stable Europe after the break-up of Gondwana. Increasing continentality, surface uplift and global cooling are additional factors responsible for decreasing δDSMOW values since the Mid-Cretaceous.

Kaolinite hydrogen isotope ratios of two large residual economic deposits (Tirschenreuth: δDSMOW=−80‰ to −76‰; Hirschau–Schaittenbach: δDSMOW=−70‰ to −63‰) can be used in combination with additional geological evidence to constrain the timing of weathering in these areas. A late Early Cretaceous kaolinization age is suggested for the Early Triassic sandstone-hosted deposits near Hirschau–Schnaittenbach, whereas a Late Oligocene to Mid-Miocene age is indicated for the Carboniferous granite-hosted Tirschenreuth deposits.  相似文献   


11.
M Ohta  T Mock  Y Ogasawara  D Rumble   《Lithos》2003,70(3-4):77-90
Diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav massif, Kazakhstan, were strongly altered by fluids flowing through fractures and infiltrating along grain boundaries during exhumation. Alteration includes retrogradation of high-grade silicate assemblages by hydrous minerals, replacement of diamond by graphite and of dolomite by calcite. Diamond-bearing carbonate rocks are among the most intensely altered isotopically with δ18OVSMOW values as low as +9‰, δ13CVPDB=−9‰, and 87Sr/86Sr as high as 0.8050. Evidence of isotopic equilibration between coexisting dolomite and high-Mg calcite during ultrahigh-pressure metamorphism (UHPM) is preserved only rarely in samples isolated from infiltrating fluids by distance from fractures. Isotopic heterogeneity and isotopic disequilibrium are widespread on a hand-specimen scale. Because of this lack of homogeneity, bulk analyses cannot provide definitive measurements of 13C/12C fractionation between coexisting diamond and carbonate. Our study adequately documents alteration on a scale commensurate with observed vein structures. But, testing the hypothesis of metamorphic origin of microdiamonds has not fully succeeded because our analytical spatial resolution, limited to 0.5 mm, is not small enough to measure individual dolomite inclusions or individual diamond crystals.  相似文献   

12.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   

13.
煤层气化学组分、甲烷碳氢同位素特征对煤层气成因、分布规律和煤层气资源评价具有重要意义。为了查明河东煤田北部兴县地区山西组、太原组煤层甲烷及二氧化碳成因,采集研究区煤层气井解吸气样,通过组分分析、CH4碳氢同位素和CO2碳同位素测试,根据煤层气成因图版,分析了煤层气稳定同位素的地质影响因素,揭示了研究区煤层气成因。结果表明,区内主力煤层的甲烷碳同位素存在明显差异:8煤甲烷δ13C1值介于-55.1‰~-44.2‰,平均为-49.2‰;13煤δ13C1值介于-65.7‰~-55.7‰,平均为-59.8‰。同一煤层内甲烷碳同位素呈现出随煤层埋深增加而变重、随水动力条件增强变轻的特点;甲烷碳同位素偏轻,重烃组分偏少,表明受到一定因素或次生作用的影响。8煤以热成因气为主,13煤以次生生物成因气为主。研究区8煤δ13C (CO2)介于-17.3‰~-4.8‰,13煤δ13C (CO2)介于-26.3‰~-6.9‰,二氧化碳为煤热演化初期或最近一次煤层抬升再沉降后煤中有机质热裂解产生。研究成果为明确该区煤层气勘探开发方向提供了理论依据。   相似文献   

14.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

15.
The mid-Proterozoic Isortoq dike swarm in the Gardar Province, South Greenland, comprises a variety of alkaline rocks ranging from gabbroic to syenitic in composition. Major magmatic mineral phases are olivine, clinopyroxene, Fe–Ti oxides, amphibole, plagioclase and alkali feldspar. Quartz occurs in some samples as a late magmatic phase. Liquidus temperatures of olivine-bearing samples range between 1120 and 1145 °C and solidus temperatures are 850–930 °C. Calculated silica activities are highly variable between 0.53 and unity. Oxygen fugacities vary from −3 to +1 log units relative to the fayalite–magnetite–quartz buffer.

The rocks have MgO contents <6 wt.% with Mg# between 53 and 17. Primitive mantle-normalized trace element patterns show a relative enrichment of LIL elements with Ba peaks and Nb troughs. Clinopyroxenes show a general enrichment in REE relative to chondritic values with variable slightly positive to prominent negative Eu anomalies. Two of the dikes were dated with Sm–Nd three-point isochrons at 1190±44 and 1187±87 Ma, respectively. Initial 87Sr/86Sr ratios of mafic mineral separates range from 0.70289 to 0.70432 and initial Nd values vary from +0.3 to −10.7. Whole-rock initial 187Os/188Os ratios are highly variable including very radiogenic values of up to 7.967. δ18Ov-smow values of separated clinopyroxene and amphibole range from +5.2‰ to +6.2‰ and fall within the range of typical mantle-derived rocks, although mixing with a lower crustal component is permitted by the data. Using energy-constrained assimilation-fractional crystallization (EC-AFC) modeling equations, the Sr–Nd isotope data of the more radiogenic samples can successfully be modeled by addition of up to 10% lower crustal granulite-facies Archean gneisses as contaminants. The Os isotopic data also suggest the involvement of old radiogenic crust. In accordance with seismic data, we conclude that a wedge of Archean crust extends from West Greenland further to the south below the present erosion level.  相似文献   


16.
The gas and redox chemistry of 100–300 °C geothermal fluids in Iceland has been studied as a function of fluid temperature and fluid composition. The partial pressures of CO2 in dilute (mCl<500 ppm) and saline (mCl>500 ppm) geothermal fluids above 200 °C are controlled by the mineral buffer clinozoisite+prehnite+calcite+quartz. Two buffers are considered to control the H2S and H2 partial pressures above 200 °C depending on fluid salinity, epidote+prehnite+pyrite+pyrrhotite for dilute fluids and pyrite+prehnite+quartz+magnetite+anhydrite+clinozoisite+quartz for saline fluids. Below 200 °C, the partial pressures of CO2, H2S and H2 also seem to be buffered but other minerals must be involved. Zeolites are expected to replace prehnite and epidote. Redox potential calculated on the assumption of equilibrium for the H+/H2 redox couple decreases in dilute geothermal fluids with increasing temperature from about −0.5 V at 100 °C to −0.8 V at 300 °C, whereas saline geothermal fluids at 250 °C display a redox potential of about −0.45 V. A systematic discrepancy between redox couples of about 0.05–0.09 V is observed in the redox potential for the dilute geothermal fluids, whereas redox potentials agree within 0.02–0.04 V for saline geothermal waters. The discrepancies in the calculated redox potential for dilute geothermal fluids are thought to be due to a general lack of equilibrium between CH4, CO2 and H2 and between H2S, SO4 and H2. It is, accordingly, concluded that an overall equilibrium among redox species has not been reached for dilute geothermal fluids whereas it appears to be more closely approached for the saline geothermal fluids. The latter conclusion is based on limited database and should be treated with care. Since the various redox components are not in an overall equilibrium in geothermal fluids in Iceland these fluids cannot be characterised by a unique hydrogen fugacity, oxygen fugacity or redox potential at a given temperature and pressure.  相似文献   

17.
A detailed fluid inclusion study has been carried out on the hydrocarbon-bearing fluids found in the peralkaline complex, Lovozero. Petrographic, microthermometric, laser Raman and bulk gas data are presented and discussed in context with previously published data from Lovozero and similar hydrocarbon-bearing alkaline complexes in order to further understand the processes which have generated these hydrocarbons. CH4-dominated inclusions have been identified in all Lovozero samples. They occur predominantly as secondary inclusions trapped along cleavage planes and healed fractures together with rare H2O-dominant inclusions. They are consistently observed in close association with either arfvedsonite crystals, partially replaced by aegirine, aegirine crystals or areas of zeolitization. The majority of inclusions consist of a low-density fluid with CH4 homogenisation temperatures between −25 and −120 °C. Those in near-surface hand specimens contain CH4+H2 (up to 40 mol%)±higher hydrocarbons. However, inclusions in borehole samples contain CH4+higher hydrocarbons±H2 indicating that, at depth, higher hydrocarbons are more likely to form. Estimated entrapment temperatures and pressures for these inclusions are 350 °C and 0.2–0.7 kbar. A population of high-density, liquid, CH4-dominant inclusions have also been recorded, mainly in the borehole samples, homogenising between −78 and −99 °C. These consist of pure CH4, trapped between 1.2 and 2.1 kbar and may represent an early CH4-bearing fluid overprinted by the low-density population. The microthermometric and laser Raman data are in agreement with bulk gas data, which have recorded significant concentrations of H2 and higher hydrocarbons up to C6H12 in these samples. These data, combined with published isotopic data for the gases CH4, C2H6, H2, He and Ar indicate that these hydrocarbons have an abiogenic, crustal origin and were generated during postmagmatic, low temperature, alteration reactions of the mineral assemblage. This would suggest that these data favour a model for formation of hydrocarbons through Fischer–Tropsch type reactions involving an early CO2-rich fluid and H2 derived from alteration reactions. This is in contrast to the late-magmatic model suggested for the formation of hydrocarbons in the similar peralkaline intrusion, Ilímaussaq, at temperatures between 400 and 500 °C.  相似文献   

18.
The Berriedale Limestone formed at about 80°S paleolatitude and contains many glacial dropstones. It formed during a period of major Gondwana deglaciation.

The Berriedale Limestone contains mostly bryozoans, brachiopods and bivalves, with some intraclasts and rare pellets. The faunal diversity is low and the fauna are similar to the modern cold-water foramol faunal assemblage. Micrite, microspar and spar occur as equant to well developed rhombs of calcite. The coarse spar cements are bored and are ruptured by dropstones, indicating submarine origin of low-Mg calcite at water-temperatures of around 3°C. The mixing zone cementation was preceded by erosion of early formed crystals. The eroded crystals occur as inclusions in mixing zone cements.

The fauna are characterized by heavy δ13C and light δ18O. The whole-rock field of δ18O-δ13C falls at the edge of “Normal Marine Limestone” and deviates to lighter δ18O values (down to −16.7‰ PDB). Lightest δ18O values ( −22‰ PDB) of fresh-water sparry calcite cement are similar to those in the Early Permian continental tillites, suggesting that the Permian sea was diluted by isotopically light melt waters. Micrite δ18O values (−9.2 to −12.6‰ PDB) are within the range of whole-rock values. The δ18O values of calcite in shales are lighter than limestone values.

The δ18O values of the fauna give an unrealistic range of sea-water temperatures because the fauna have equilibrated with variable amounts of melt waters. However, calculated original δ18O values of the fauna indicate temperatures < 4°C. The heaviest δ18O of fauna gives cold temperatures of 9°C (with δw −2.8‰) and −3°C (with δw −6‰). The lightest values of sparry calcite cements (−22‰ PDB) indicate that the limestone reacted with cold melt waters.

The δ18O of Permian sea is estimated to be about +1.2‰ and was diluted by melt waters as light as −27‰ SMOW.  相似文献   


19.
The concentrations of cosmogenic 3He have been measured in a series of basaltic drill core samples from Hawaiian volcanoes Haleakala and Mauna Loa. The 3He concentration in the surface of a radiocarbon dated Mauna Loa flow (20,000 years) gives reasonable agreement with a theoretical production rate of 140 atoms g−1yr−1 and suggests that the uncertainty in this rate is roughly 10%. The results illustrate the feasibility of using 3He to measure exposure ages of young basaltic lava flows and for measuring erosion rates. Erosion rates calculated from the three Haleakala cores range from 7 to 11 meters/million years. The drill core data demonstrate that accurate depth control is crucial to the use and evaluation of cosmogenic helium. Depth profiles from several of the older cores display a non-exponential depth dependence of 3Hec below 170 g cm−2, which is attributed to the contribution from 6Li(n, )T, where the neutrons are from stopped muons. This has important implications for depth dependence of cosmogenic 3He because muons are weakly attenuated compared to the nucleonic component that produces spallation.  相似文献   

20.
Analyses of the chemical and isotopic composition of carbonates rocks recovered from methane seepage areas of the Kodiak Trench, Hydrate Ridge, Monterey Bay Clam Flats, and the Eel River Basin, coupled with the studies of the chemistry of the pore fluids, have shown that these carbonates have grown within the sediment column. Geochemical profiles of pore fluids show that, in deep water seeps (Kodiak Trench—4450 m; Monterey Bay—1000 m; Hydrate Ridge—650 m), δ13C (DIC) values are low (isotopically light), whereas in the Eel River area ( 350–500 m), δ13C (DIC) values are much higher (isotopically heavier). In all cases, the δ13C values indicate that processes of methane oxidation, associated with sulfate reduction, are dominant in the shallow sediments. Data on the isotopic composition of authigenic carbonates found at sites in Kodiak Trench, Eel River Basin South, and Eel River Basin North indicate a variable composition and origin in different geochemical environments. Some of the authigenic carbonates from the study sites show a trend in their δ13C values similar to those of the pore fluids obtained in their vicinity, suggesting formation at relatively shallow depths, but others indicate formation at greater sediment depths. The latter usually consist of high magnesium calcite or dolomite, which, from their high values of δ13C (up to 23‰;) and δ18O (up to 7.5‰), suggest formation in the deeper horizons of the sediments, in the zone of methanogenesis. These observations are in agreement with observations by other workers at Hydrate Ridge, in Monterey Bay, and in the Eel River Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号