首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The solubility and solution mechanisms of reduced COH volatiles in Na2OSiO2 melts in equilibrium with a (H2 + CH4) fluid at the hydrogen fugacity defined by the iron-wüstite + H2O buffer [fH2(IW)] have been determined as a function of pressure (1-2.5 GPa) and silicate melt polymerization (NBO/Si: nonbridging oxygen per silicon) at 1400 °C. The solubility, calculated as CH4, increases from ∼0.2 wt% to ∼0.5 wt% in the melt NBO/Si-range ∼0.4 to ∼1.0. The solubility is not significantly pressure-dependent, probably because fH2(IW) in the 1-2.5 GPa range does not vary greatly with pressure. Carbon isotope fractionation between methane-saturated melts and (H2 + CH4) fluid varied by ∼14‰ in the NBO/Si-range of these melts.The (C..H) and (O..H) speciation in the quenched melts was determined with Raman and 1H MAS NMR spectroscopy. The dominant (C..H)-bearing complexes are molecular methane, CH4, and a complex or functional group that includes entities with CCH bonding. Minor abundance of complexes that include SiOCH3 bonding is tentatively identified in some melts. There is no spectroscopic evidence for SiC or SiCH3. Raman spectra indicate silicate melt depolymerization (increasing NBO/Si). The [CH4/CCH]melt abundance ratio is positively correlated with NBO/Si, which is interpreted to suggest that the (CCH)-containing structural entity is bonded to the silicate melt network structure via its nonbridging oxygen. The ∼14‰ carbon isotope fractionation change between fluid and melt is because of the speciation changes of carbon in the melt.  相似文献   

2.
The O 1s spectrum is examined for 19 uranyl minerals of different composition and structure. Spectra from single crystals were measured with a Kratos Axis Ultra X-ray Photoelectron Spectrometer with a magnetic-confinement charge-compensation system. Well-resolved spectra with distinct maxima, shoulders and inflections points, in combination with reported and measured binding energies for specific O2− species and structural data of the uranyl minerals are used to resolve the fine structure of the O 1s envelope. The resolution of the O 1s spectra includes, for the first time, different O2− bands, which are assigned to O atoms linking uranyl with uranyl polyhedra (UOU) and O atoms of uranyl groups (OUO). The resolved bands in the O 1s spectrum occur at distinct ranges in binding energy: bands for (UOU) occur at 529.6-530.4 eV, bands for (OUO) occur at 530.6-531.4 eV, bands for O2− in the equatorial plane of the uranyl polyhedra linking uranyl polyhedra with (TOn) groups (T = Si, S, C, P, Se) (TO) occur at 530.9-532.2 eV; bands for (OH) groups in the equatorial plane of the uranyl polyhedra (OH) occur at 532.0-532.5 eV, bands of (H2O) groups in the interstitial complex of the uranyl minerals (H2Ointerst) occur at 533.0-533.8 eV and bands of physisorbed (H2O) groups on the surface of uranyl minerals (H2Oadsorb) occur at 534.8-535.2 eV. Treatment of uranyl minerals with acidic solutions results in a decrease in UOU and an increase in OH. Differences in the ratio of OH OUO between the surface and bulk structure is larger for uranyl minerals with a high number of UOU and TO species in the bulk structure which is explained by protonation of underbonded UO, UOU and TO terminations on the surface. The difference in the ratio of H2Ointerst OUO between the bulk and surface structures is larger for uranyl minerals with higher percentages of H2Ointerst as well as, with a higher number of interstitial H2O groups that are not bonded to interstitial cations, resulting in easier dehydration of interstitial H2O groups in uranyl minerals during exposure to a vacuum.  相似文献   

3.
4.
Edge sites of clay minerals play a key role for pH dependent sorption of ions from solutions of electrolytes. Pyrophyllite, Al2[Si4O10](OH)2, is an important structural prototype for a variety of 2:1 dioctahedral phyllosilicates but in contrast to the other clays has no permanent structural charge. The structure of thin water films confined between most common edges of 1Tc pyrophyllite: (0 1 0), (1 1 0) and (1 0 0), was analyzed by means of ab initio molecular dynamic simulations. The system setup allowed for a full flexibility of the interfaces and a proton exchange between the edges of pyrophyllite and water molecules in solution. The structure of hydrated surfaces is compared with the recent predictions of static geometry optimizations for edge-vacuum interfaces. All surfaces studied reveal a strong hydrophilic character of edge similar to the hydrated silica surface and the facets of simple layered hydroxides. Spontaneous proton transfer between different surface sites were observed in molecular dynamics simulations of the (0 1 0) interface. The proton bound to the SiOH site was found to exchange with the AlOH group by the mechanism . The direction of the proton transfer agrees with the scale of relative proton affinities for surface sites obtained from the static calculations. Alternatively, the proton attached to the AlOH2 site exchanges with the AlOH group. In both reactions, the protons are transferred through the chains of hydrogen bonds formed between water molecules in the solution and the surface sites. The observed mechanisms might be one of the basic schemes for the surface proton diffusion in compacted clays. Kinetics of the proton transfer at edge sites is limited by the rate of rearrangements of the water molecules near interface.  相似文献   

5.
Goethite(α-FeOOH), an abundant and highly reactive iron oxyhydroxide mineral, has been the subject of numerous studies of environmental interface reactivity. However, such studies have been hampered by the lack of experimental constraints on aqueous interface structure, and especially of the surface water molecular arrangements. Structural information of this type is crucial because reactivity is dictated by the nature of the surface functional groups and the structure or distribution of water and electrolyte at the solid-solution interface. In this study we have investigated the goethite (1 0 0) surface using surface diffraction techniques, and have determined the relaxed surface structure, the surface functional groups, and the three dimensional nature of two distinct sorbed water layers. The crystal truncation rod (CTR) results show that the interface structure consists of a double hydroxyl, double water terminated interface with significant atom relaxations. Further, the double hydroxyl terminated surface dominates with an 89% contribution having a chiral subdomain structure on the (1 0 0) cleavage faces. The proposed interface stoichiometry is ((H2O)(H2O)OH2OHFeOOFeR) with two types of terminal hydroxyls; a bidentate (B-type) hydroxo group and a monodentate (A-type) aquo group. Using the bond-valence approach the protonation states of the terminal hydroxyls are predicted to be OH type (bidentate hydroxyl with oxygen coupled to two Fe3+ ions) and OH2 type (monodentate hydroxyl with oxygen tied to only one Fe3+). A double layer three dimensional ordered water structure at the interface was determined from refinement of fits to the experimental data. Application of bond-valence constraints to the terminal hydroxyls with appropriate rotation of the water dipole moments allowed a plausible dipole orientation model as predicted. The structural results are discussed in terms of protonation and H-bonding at the interface, and the results provide an ideal basis for testing theoretical predictions of characteristic surface properties such as pKa , sorption equilibria, and surface water permittivity.  相似文献   

6.
Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile (CN) and carboxyl (COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other extraterrestrial samples, D isotopic anomalies, but not those of 15N, may be explained in part by exposure to ionizing electron radiation.  相似文献   

7.
8.
Molecular dynamics simulations of water in contact with the (0 0 1) and (0 1 0) surfaces of orthoclase (KAlSi3O8) were carried out to investigate the structure and dynamics of the feldspar-water interface, contrast the intrinsic structural properties of the two surfaces, and provide a basis for future work on the diffusion of ions and molecules in microscopic mineral fractures. Electron density profiles were computed from the molecular dynamics trajectories and compared with those derived experimentally from high-resolution X-ray reflectivity measurements by Fenter and co-workers [Fenter P., Cheng L., Park C., Zhang H. and Sturchio N. C. (2003a) Structure of the orthoclase (0 0 1)- and (0 1 0)-water interfaces by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta67, 4267-4275]. For each surface, three scenarios were considered whereby the interfacial species is potassium, water, or a hydronium ion. Excellent agreement was obtained for the (0 0 1) surface when potassium is the predominant interfacial species; however, some discrepancies in the position of the interfacial peaks were obtained for the (0 1 0) surface. The two surfaces showed similarities in the extent of water ordering at the interface, the activation energies for water and potassium desorption, and the adsorption localization of interfacial species. However, there are also important differences between the two surfaces in the coordination of a given adsorbed species, adsorption site densities, and the propensity for water molecules in surface cavities and those in the first hydration layer to coordinate to surface bridging oxygen atoms. These differences may have implications for the extent of dissolution in the low-pH regime since hydrolysis of Si(Al)OSi(Al) bonds is a major dissolution mechanism.  相似文献   

9.
The paper systematizes and integrates the results of geological, isotopic geochronological, and geochemical studies of the igneous rocks that make up the Ulkan-Dzhugdzhur anorthosite-rapakivi granite-peralkaline granite association and related mineralization. This association is a typical example of anorogenic igneous rocks that formed in the within-plate geodynamic setting most likely under effect of the mantle superplume, which was active in the territory of the Siberian Craton 1.75–1.70 Ga ago. The igneous rock association formed in a discrete regime that reflected the pulsatory evolution of a sublithospheric mantle source. The prerift (1736–1727 Ma) and rift proper (1722–1705 Ma) stages and a number of substages are distinguished. All igneous rocks pertaining to this association have mixed mantle-crustal origin. Basic rocks crystallized from the OIB-type basaltic magma, which underwent crustal contamination at various depths. Felsic rocks are products of mantle and crustal magma mixing. The contribution of mantle component progressively increased in a time-dependent sequence: moderately alkaline subsolvus granite → moderately alkaline and alkaline hypersolvus granites → peralkaline hypersolvus granite. All endogenic deposits in the studied district are related to a single source represented by the mantle plume and its derivatives. The Fe-Ti-apatite deposits hosted in anorthosite formed as a result of intense lower crustal contamination of basaltic magma near the Moho discontinuity and two stages of fractional crystallization at lower and upper crustal depth levels. The rare-metal deposits are genetically related to peralkaline granite. Formation of uranium deposits was most likely caused by Middle Riphean rejuvenation of the region, which also involved rocks of the Ulkan-Dzhugdzhur association.  相似文献   

10.
In this study the physico-chemical, titration and sorption characteristics of Na-illite du Puy (Na-illite) have been measured and modelled. Samples of illite, collected in the region of le Puy-en-Velay, France, were purified and conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch backtitration technique in 0.01, 0.1 and 0.5 M NaClO4 background electrolytes from pH∼3 to ∼11.5 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modelled in terms of the protolysis of two amphoteric edge sites (SW1OH and SW2OH) without an electrostatic term. Sorption edges (solid/liquid distribution ratios versus pH at trace sorbate concentrations and constant ionic strength) were determined for the transitions metals Ni(II) and Co(II), the lanthanide Eu(III), and the heavy metal Sn(IV) on Na-illite with NaClO4 as the background electrolyte under anoxic conditions (CO2 ? 2 ppm, O2 ? 2 ppm). The study thus encompasses a broad range of metals with different thermodynamic characteristics and with valence states ranging from II to IV. The results from the modelling of the titration data, in combination with a non electrostatic surface complexation and cation exchange sorption model were applied to quantitatively describe the uptake characteristics of the metals listed above on Na-illite. Since sorption edges were measured at trace concentrations, metal uptake was modelled as occurring on strong type sites (SSOH) only. This sorption model, the two site protolysis non electrostatic surface complexation and cation exchange model (2SPNE SC/CE model) had been previously developed and used to describe metal uptake on montmorillonite.  相似文献   

11.
The thermal dehydroxylation of a goethite-carbonate solid solution was studied with combined Fourier-transform infrared (FTIR)-Temperature programmed desorption (TPD) experiments. The TPD data revealed dehydroxylation peaks involving the intrinsic dehydroxylation of goethite at 560 K and a low temperature peak at 485 K which was shown to be associated to the release of non-stoichiometric water from the goethite bulk and surface. The FTIR and the TPD data of goethite in the absence of adsorbed carbonate species revealed the presence of adventitious carbonate mostly sequestered in the goethite bulk. The release of carbonate was however not only related to the dehydration of goethite but also from the crystallization of hematite at temperatures exceeding 600 K. The relative abundance of surface hydroxyls was shown to change systematically upon goethite dehydroxylation with a preferential stripping of singly-coordinated OH sites followed by a dramatic change in the dominance of the different surface hydroxyls upon the formation of hematite.  相似文献   

12.
Characterization of humic substances is challenging due to their structural complexity and heterogeneity. Solid state nuclear magnetic resonance (NMR) is regarded as one of the best tools for elucidating structures of humic substances. The primary solid state NMR technique that has been used so far is the routine 13C cross polarization-magic angle spinning (CP-MAS) technique. Although this technique has markedly advanced our understanding of humic substances, the full potential of NMR for characterizing humic substances has yet to be realized. Recent technical developments and applications of advanced solid state NMR have revealed the promise to provide deeper insights into structures of humic substances. In this paper, we summarized and demonstrated the systematic solid state NMR protocol for characterization of humic substances using a humic acid as an example. This protocol included (1) identification of specific functional groups using spectral editing techniques, occasionally assisted by 1H13C two-dimensional heteronuclear correlation (2D HETCOR) NMR, (2) quantification of specific functional groups based on direct polarization-magic angle spinning (DP-MAS) and DP-MAS with recoupled dipolar dephasing, combined with spectral editing techniques, (3) determination of connectivities and proximities of specific functional groups by 1H13C 2D HETCOR or 2D HETCOR combined with spectral editing techniques, and (4) examination of domains and heterogeneities by 1H13C 2D HETCOR with 1H spin diffusion. We used a soil humic acid as an example to demonstrate how this protocol was applied to the characterization of humic substances step by step. Afterwards, based on typical 13C NMR spectra of humic substances we described how we could combine different NMR techniques to identify specific functional groups band by band from downfield to upfield. Finally, we briefly mentioned the potential new NMR techniques that could be developed to enrich the current systematic protocol. This systematic protocol is not only applicable to humic substances but also to other natural organic matter samples.  相似文献   

13.
The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site (FeOH°), while gentisic acid at the surface was described by two surface complexes (FeLH2°, log Kint = 8.9 and FeLH, log Kint = −8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (∼10−3 s−1) while external and internal mass transfer rates (∼102 s−1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.  相似文献   

14.
Structures, stabilities and vibrational spectra have been calculated using molecular quantum mechanical methods for As(OH)3, AsO(OH)3, As(SH)3, AsS(SH)3 and their conjugate bases and for several species with partial substitution of S for O. Properties for the neutral gas-phase molecules are calculated with state-of-the-art methods which yield AsL distances within 0. 01 Å and AsL stretching frequencies within 10 cm−1 of experiment. Similar accuracy is obtained for neutral molecules in solution using a polarizable continuum model (PCM). For monoanions such as and frequencies can be calculated to within 20 cm−1 of experiment using the polarizable continuum model. Multiply charged anions remain a challenge for accurate frequency calculations, but we have obtained results within the PCM model which at least semiquantitatively reproduce the available data. This allows us to assign the controversial features D, E and F in the Raman data of (Wood S. A., Tait C. D. and Janecky D. R. (2002) A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3, 31-39).To help in the assignment of the arsenic sulfide spectra we have also calculated energetics for the oxidation of As(III) to As(V) compounds by polysulfides, disproportionation of As(III) compounds and for the dissociation of the oxo- and thio-acids. We have determined that As(III) oxyacids can be transformed to thioacids which can in turn be oxidized to As(V) sulfides by polysulfides and that the pKa1s of the acids involved can be ordered as follows: AsS(SH)3 < As(SH)3 < AsO(OH)3 < As(OH)3 in order of increasing pKa1. We have also established from the calculated energies that the most stable form of the As(III) oxyacid in acidic aqueous solution is indeed As(OH)3, consistent with previous assignments.  相似文献   

15.
A magmatic gap from 1.82 to 1.76 b.y. in the Lake Superior region represents the transition from synorogenic calc-alkaline igneous activity of the Penokean Orogeny to anorogenic potassic granophyric granite and ignimbrite. This paper deals with the petrogenetic evolution of 1.76 b.y. granites which represent a major change in source material and conceivably tectonic setting. Although perhaps related to a termination of the Penokean Orogeny by melting of a tectonically thickened crust during collision, these post-Penokean granites may represent the initial appearance of anorogenic, potentially rift-related igneous activity that was widespread throughout North America during late Precambrian time.These post-Penokean granites are too iron-rich and Al-poor to be considered calc-alkaline, a compositional feature shared with most anorogenic igneous activity of continental regions. Within this suite in central and northern Wisconsin, regional differences in composition indicate at least two different granite magma types: one a metaluminous suite of biotite and biotite-hornblende granite and a peraluminous suite of two-mica granite. The systematic compositional differences (Al, Fe/Mg, Ba/Sr, REE) in the two magma suites are likely the result of small differences in residue mineralogy and/or source composition. In general, the degree of fusion was small (10%) and probably of relatively young Penokean material. Both suites have a range of composition due to feldspar dominated fractional crystallization. Removal of the accessory minerals apatite, zircon, and allanite resulted in the REE depletion with differentiation of the two-mica granites.The granites intruded into the upper levels of the crust, and the appearance of primary celadonitic muscovite and subsolvus alkali feldspars (silicic members only) in the two mica granites indicate crystallization at depths of 10–11 km. The biotite granites contain both hypersolvus and subsolvus members and are intruded at depths less than 6 km with the more shallow members generating major volumes of ignimbrite. As a marked departure from the characteristics of most anorogenic granites, these melts crystallized at fairly oxidizing conditions (higher for the two-mica suite) as reflected in the composition of biotite, predominance of magnetite over ilmenite, and early appearance of the Fe-Ti oxides in the crystallization sequence.  相似文献   

16.
A major alkali province of late Panafrican age occupies centralMadagascar and takes the form of a thick sequence of ‘stratoid’(sheet-like)granites emplaced in a mid-crustal gneissic basement This alkalinemagmatism has been interpreted as a consequence of extensionaltectonics accompanying the collapse of the Mozambique belt.The rocks belong to three petrographic types: subsolvus granites,hypersolvus alkaline granites and syenites. Major and traceelement analyses have typical A-type characteristics. Two distinctmagmatic suites are recognized: a mildly alkaline suite includingall the subsolvus granites and a strongly alkaline suite includingthe hypersolvus alkaline granites and the syenites. We proposethat the mildly alkaline suite was derived from a granodioriticcrustal protolith. Some of the strongly alkaline granites andthe quartz syenites display low 18O isotopic signatures of around+6.The parental magmas for this suite are most probably of mantlederivation. The more evolved compositions are consistent withcrystal fractionation processes. Contemporaneous alkaline silicicplutonismoccurs in many parts of the Panafrican belt of Eastern Africa;however, sheet-like intrusions have rarely been described. Asa large-scale province, the nearest analogues of the stratoidgranites of Madagascar are the rapakivi granites of earlierProterozoic age in Scandinavia and Greenland. KEY WORDS: alkaline granite; Madagascar; Panafrican; pastcollisional magmatism *Corresponding author  相似文献   

17.
Anorogenic granites of middle to late Proterozoic age in the Davis Inlet — Flowers Bay area of Labrador are subdivided on the basis of petrology and geochemistry into three coeval suites. Two of these are high-temperature anhydrous hypersolvus granites: a peralkaline aegirine-sodic-calcic to sodic amphibole-bearing suite and a non-alkaline fayalite-pyroxene-bearing suite. The third is a group of non-alkaline subsolvus hornblende-biotite-bearing granites. Associated with the hypersolvus peralkaline suite is a group of genetically related syenites and quartz syenites. The granites cut ca. 3,000 Ma old Archaean gneisses as well as Elsonian layered basic intrusions of the Nain Complex. One of these, a crudely layered mass which ranges in composition from gabbro to diorite and monzonite, appears to be related to the syenites. The peralkaline granites and some of the syenites are extremely enriched in the high field-strength elements such as Y, Zr, Nd, as well as Rb, Ga and Zn, and have low abundances of Ba, Sr and most of the transition elements. In contrast, the non-alkaline hypersolvus and subsolvus granites do not show the same degree of enrichment. Concentration of the highly charged cations in the peralkaline suite is believed to be the result of halogen-rich fluid activity during fractionation of the magma. The sodic evolution trend in the peralkaline suite is reflected mineralogically by the development of aegirine and aegirine-hedenbergite solid solutions, and by a spectacular amphibole compositional range from katophorite through winchite, richterite, riebeckite to arfvedsonite and ferro eckermannite. Accessory phases which are ubiquitous in these rocks include aenigmatite, astrophyllite, fluorite, monazite and zircon. The non-alkaline hypersolvus granites typically contain iron-rich phases such as fayalite, eulite, ferrosilite-hedenbergite, and annite rich biotite. In the subsolvus granites, amphiboles range in composition from edenite through common hornblende to actinolite and also coexist with annite-rich biotite.Whole-rock and mineral isotopic data for the different suites yield isochrons that are within error of ca. 1,260 Ma, but they have variable initial 87Sr/86Sr ratios. The initial 87Sr/86Sr of the syenites and peralkaline granites (0.7076±11) is significantly lower than the initial 87Sr/86Sr of the subsolvus granites (0.7138±22). These isotopic data provide further confirmation of the importance of a late Elsonian alkaline event in Labrador which can be correlated with Gardar igneous activity in south Greenland. The petrogenesis of the peralkaline suite is interpreted to reflect the effects of fractionation of anhydrous phases from mantle derived basic magma which was contaminated during ascent by radiogenic partial melts of crustal derivation. The non-alkaline hypersolvus and subsolvus granites are interpreted as crustal melts which formed under conditions of variable in response to the same thermal event, and which subsequently experienced feldspar fractionation during crystallization.  相似文献   

18.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

19.
Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., OH, COOH, NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ∼2.5 to ∼3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong δ13Ckerogen vs. δ15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back-reactions between mobile pyrolysis products from the hot zone as they encounter less hot kerogen. Vein and cell filling carbonate is most abundant in highest rank coals where carbonate δ13CVPDB and δ18OVSMOW values are consistent with thermal generation of 13C-depleted and 18O-enriched CO2 from decarboxylation and pyrolysis of organic matter. Lower background concentrations of 13C-enriched carbonate in thermally unaffected coal may be linked to 13C-enrichment in residual CO2 in the process of CO2 reduction via microbial methanogenesis.Our compilation and comparison of available organic H, C, N isotopic findings on magmatic intrusions result in re-assessments of majors factors influencing isotopic shifts in kerogen during magmatic heating. (i) Thermally induced shifts in organic δD values of kerogen are primarily driven by the availability of water or steam. Hydrologic isolation (e.g., near Illinois dikes) results in organic D-depletion in kerogen, whereas more common hydrologic connectivity results in organic D-enrichment. (ii) Shifts in kerogen (or coal) δ13C and δ15N values are typically small and may follow sinusoidal patterns over short distances from magmatic contacts. Laterally limited sampling strategies may thus result in misleading and non-representative data. (iii) Fluid transport of chemically active, mobile carbon and nitrogen species and recombination reactions with kerogen result in isotopic changes in kerogen that are unrelated to the original, autochthonous part of kerogen.  相似文献   

20.
The 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model has been used over the past decade or so to quantitatively describe the uptake of metals with oxidation states from II to VI on 2:1 clay minerals; montmorillonite and illite. One of the main features in this model is that there are two broad categories of amphoteric edge sorption sites; the so called strong (SSOH) and weak (SW1OH) sites. Because of their different sorption characteristics, it was expected that the coordination environments of the surface complexes on the two site types would be different. Zn isotherm data on two montmorillonites, Milos and STx-1, were measured and modelled using the 2SPNE SC/CE sorption model. The results were used to define the most favourable experimental conditions under which Zn sorption was either dominated by the strong (SSOH, ∼2 mmol kg−1) or by the weak sites (SW1OH, ∼40 mmol kg−1). Highly oriented self-supporting films were prepared for polarised extended X-ray absorption fine structure (P-EXAFS) investigations.Montmorillonites often contain Zn incorporated in the clay matrix. The Zn bound in this form was quantified and the results from the analysis of the P-EXAFS spectra were taken into account in the interpretation of the spectra measured at low Zn loadings (∼2 mmol kg−1) and medium Zn loadings (∼30 mmol kg−1). The Zn spectra on the “strong sites” exhibited a pronounced angular dependency and formed surface complexes in the continuity of the Al-octahedral sheets at the montmorillonite edges. In contrast, the Zn “weak site” spectra showed only a weak angular dependency. The spectroscopic evidence indicates the existence of two distinct groups of edge surface binding sites which is consistent with a multi-site sorption model and in particular with the strong/weak site concept intrinsic to the 2SPNE S/CE sorption model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号