首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
地表释放源释放的N2O均比对流层大气N2O贫^15N,对流层N2O的氮同位素质量由平流层回流的富^15N的N2O来平衡,若全球N2O源汇质量估算结果是平衡的,则地表释放源对对流层N2O的氮同位素质量的贡献量应与平流层回流的贡献量相等。  相似文献   

2.
NOx大气化学概论及全球NOx释放源综述   总被引:3,自引:0,他引:3  
NOx在全球大气环境、气候变化和地圈N生物地球化学循环中起着极其重要的作用。本文综述了NOx大气浓度增长对对流层大气O3污染,大气氧化能力和酸沉降及平流层O2消耗的影响;同时探讨了全球NOx释放源组成,年释放总量和人类活动的贡献,并与N2O的源组成进行了对比。  相似文献   

3.
全球变化条件下的平流层大气长期变化趋势   总被引:5,自引:0,他引:5  
两个因素将对21世纪平流层气候变化产生重要作用。一个是温室气体增加,另一个是平流层臭氧的可能恢复。温室气体增加的辐射效应一方面造成地面和对流层变暖,另一方面却导致平流层变冷,而臭氧层恢复的辐射效应则导致平流层变暖。在温室气体增加和臭氧恢复这两种相反因素作用下的平流层温度如何变化是所关心的主要问题。为了预估平流层温度在21世纪的变化,使用了辐射—对流模式进行了敏感性实验,另外,也对他人进行的化学—气候耦合模式(CCM)模拟结果进行了分析。这些模拟结果表明,在21世纪平流层中上层(60~1 hPa)将变冷,而下层(150~60 hPa)变暖。这说明在平流层中上层温室气体的冷却效应将起主导作用,而臭氧恢复的加热效应在平流层下层相对更为重要。CCM的模拟结果表明,臭氧恢复最显著的区域在平流层上层(3 hPa附近),与最大降温区一致,说明温室气体增加将有利于平流层上层臭氧恢复。CCM的模拟结果还表明,平流层两极地区在冬半年存在变暖的现象。根据已有的研究结果,极区变暖与平流层行星波活动增强有关,动力、热力和化学之间的正反馈作用也有可能对极区变暖有重要的贡献。  相似文献   

4.
概论N2O大气浓度演变及其大气化学   总被引:4,自引:0,他引:4  
N2O在对流层中是长寿命的痕量温室气体,在平流层,它是破坏O3层主要痕量气体之一-NO的生成源。本文主要综述了N2O的大气浓度演变,大气寿命,对温室效应的贡献,大气化学等,着重探讨了可能存在的N2O大气生成和消耗过程。  相似文献   

5.
基于生命支持系统的基本组成分析,人类活动、人口增长使CO2、CH4、H2O、N2O等含量急骤增加,导致气候变暖、水资源危机加重;地质灾害对人类的影响加重;能源和原材料的缺乏;废物的排放量增大以及变异生物新种的发现;另外需要保护土壤。这些问题的深入研究和合理解决均是地球科学优先和急于考虑的,这需要一个高素质的队伍,具有自然科学、工程学、经济学和管理知识的复合人才,因而保护环境、持续发展,要以教育为本  相似文献   

6.
Fyfe  WS 廖展宇 《世界地质》1997,16(2):72-78
基于生命支持系统的基本组成分析,人类活动、人口增长使CO2、CH4、H2O、N2O等含量急骤增加,导致气候变暖、水资源危机加重;地质灾害对人类的影响加重;能源和原材料的缺乏;废物的排放量增大以及变异生物新种的发现;另外需要保护土壤。这些问题的深入研究和合理解决均是地球科学优先和急于考虑的,这需要一个高素质的队伍,具有自然科学、工程学、经济学和管理知识的复合人才,因而保护环境、持续发展,要以教育为本  相似文献   

7.
全球碳循环与气候模式中一个关键的不确定性因素就是:有机质活动、温度和大气CO2对硅酸盐风化作用的综合效应。本文首次指出辉石和钙长石的溶解速率表明,硅酸盐在富有机质溶液中的风化作用并不受土壤CO2的直接影响,但对温度却很敏感。很明显,CO2通过增加有机质的活度和产生腐蚀性有机酸而间接地加速了硅酸盐的风化。当将这种风化因素引入稳态碳循环和气候模式中的输出入时,就能加强硅酸盐风化而起到扮演全球恒温箱的作  相似文献   

8.
西天山阿希金矿流体包裹体研究   总被引:37,自引:0,他引:37  
沙德铭 《贵金属地质》1998,7(3):180-188
西天山阿希金矿含金石英脉仙流体包裹体粒度细小,形态多样,以单一液相为主。化学成分上属K^+(Na^+)-SO4^2-(Cl^-)型,其中阳离子成分以K^+为主,Na^+次之;阴离子成分以SO4^2-为主,Cl^-次之;气相成分以H2O、CO为主,富含O2、N2等气候,还原性气体(H2、CH4、CO等)含量亦较高。成矿作用发生于浅成(300 ̄900m)、低温(120 ̄180℃)和较封闭的还原环境。成  相似文献   

9.
固体地球科学前沿研究的新挑战   总被引:4,自引:0,他引:4  
钱祥麟 《地学前缘》1995,2(2):183-186
在地球早期至今的几十亿年历史长河中,行星地球从过去的早期阶段到现今阶段是受整个地球系统发展的结果。借鉴地质历史演化,地球系统的过去状态特性对预测将来是非常有助的。温室效应尚不确知,因为这样一个问题难以解释,即近期150万年甚至整个第四纪240万年内冰期与间冰期相间出现,与人类释放CO_2或消耗燃料无关。CO_2或CH_4叠加大气温度的变化趋势到底是什么?平流层的臭氧是否也有自身修复的功能,它自身是否也在变化?固体地球科学作为地球科学前沿,需要持续发展,应当参与全球变化研究。  相似文献   

10.
塔里木盆地塔中45井及柯坪西克尔萤石成因的讨论   总被引:10,自引:0,他引:10  
赵霞 《西北地质》2000,33(3):5-8
本区萤石中含丰富的包裹体,可分为纯液相包裹体和气液包裹体两类。包裹体气相成分主要为CO2、N2、H2S、CH4、SO2、C2H2和C3H3;液相成分较为复杂,主要为CO2、N2、H2S、CH4、Cl2和有机成分C3H3、C6H6。深部岩浆释气作用产生的气相组分沿构造裂隙向上运移,并在碳岩的底板相附近与下渗的表生卤水溶液相遇而混合,是产生萤石层的主要原因。  相似文献   

11.
Two climate simulations of 150 years, performed with a coupled ocean/sea-ice/atmosphere model including stratospheric ozone, respectively with and without heterogeneous chemistry, simulate the tropospheric warming associated with an increase of the greenhouse effect of carbon dioxide and other trace gases since 1950 and their impact on sea–ice extent, as well as the stratospheric cooling and its impact on ozone concentration. The scenario with heterogeneous chemistry reproduces the formation of the ozone hole over the South Pole from the 1970s and its deepening until the present time, and shows that the ozone hole should progressively fill during the coming decades. To cite this article: J.-F. Royer et al., C. R. Geoscience 334 (2002) 147–154.  相似文献   

12.
中国南极气象考察与全球变化研究   总被引:15,自引:0,他引:15  
利用中国南极长城气象站和中山气象台常规气象观测及与气象有关的科学考察资料 ,对中国南极气象台站的气候和大气环境特征及其对全球变化的响应进行了研究。研究结果表明 ,南极和邻近地区气候变化存在着时间、空间上的多样性。中国南极长城站和中山站正好处于南极半岛和东南极两个不同的气候区。近 10余年来 ,当位于南极半岛地区的长城站显著增温时 ,位于东南极的中山站恰有较明显的降温趋势。南极地区的温度变化趋势与全球平均变化有较大差异。这种变化和差异很难简单地用全球温室效应来解释。近 7年来 ,中山站地区的大气臭氧总量有减少趋势 ,与全球大气臭氧总量变化趋势相同。在南极地区 ,进一步加强国际合作 ,继续监测包括近地面温度在内的大气要素的变化 ,积极获取代用资料 ,仍是全球变化研究的重要内容之一。  相似文献   

13.
对流层大气氧化性研究进展   总被引:2,自引:0,他引:2  
对流层大气氧化性是对流层大气自我清洁能力的一个重要指标,对流层中大多数痕量气体都是通过氧化过程清除的.回顾近半个世纪以来对流层大气氧化性的研究历史,对流层大气氧化性的研究无论是从测量技术还是模式研究方面都已取得了一定的进展.工业革命以来,由于人类活动的影响,CO、NOx和碳氢化合物等大气污染物排放增多,使得全球对流层大气OH浓度呈下降趋势,未来对流层大气氧化性的变化很大程度上也取决于这些气体的排放情况.利用全球三维大气化学传输模式MOZART研究中国地区对流层大气OH自由基的分布和变化趋势表明,与全球OH自由基变化趋势不同,近10年来中国东部地区OH自由基浓度趋于增加.未来对流层大气氧化性研究的关键问题仍是OH自由基测量技术的提高问题,OH自由基观测结果是完善对流层光化学机制和改进大气化学模式的先决条件.  相似文献   

14.
《Comptes Rendus Geoscience》2018,350(7):368-375
Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone.  相似文献   

15.
This article provides an overview of the various satellite instruments, which have been used to observe stratospheric ozone and other chemical compounds playing a key role in stratospheric chemistry. It describes the various instruments that have been launched since the late 1970s for the measurement of total ozone column and ozone vertical profile, as well as the major satellite missions designed for the study of stratospheric chemistry. Since the discovery of the ozone hole in the early 1980s, spatial ozone measurements have been widely used to evaluate and quantify the spatial extension of polar ozone depletion and global ozone decreasing trends as a function of latitude and height. Validation and evaluation of satellite ozone data have been the subject of intense scientific activity, which was reported in the various ozone assessments of the state of the ozone layer published after the signature of the Montreal protocol. Major results, based on satellite observations for the study of ozone depletion at the global scale and chemical polar ozone loss, are provided. The use of satellite observations for the validation of chemistry climate models that simulate the recovery of the ozone layer and in data assimilation is also described.  相似文献   

16.
平流层大气过程研究的前沿与重要性   总被引:14,自引:2,他引:12  
当前全球气候变化,重大灾害性天气气候事件的预警预测,以臭氧洞出现和臭氧层变化引起的全球环境变化监测预测,以及对临近空间的开发利用已经引起大气科学界对处于对流层大气以上的平流层大气过程的重要关注。扼要介绍了当前这方面的研究前沿和重要应用领域,最后提出我国加强平流层大气过程研究的建议。  相似文献   

17.
《Comptes Rendus Geoscience》2018,350(7):442-447
The Montreal Protocol has controlled the production and consumption of ozone-depleting substances (ODSs) since its signing in 1987. The levels of most of these ODSs are now declining in the atmosphere, and there are now initial signs that ozone levels are increasing in the stratosphere. Scientific challenges remain for the Montreal Protocol. The science community projected large ozone losses if ODSs continued to increase, and that ozone levels would increase if ODSs were controlled and their levels declined. Scientists remain accountable for these projections, while they continue to refine their scientific basis. The science community remains vigilant for emerging threats to the ozone layer and seeks scientific evidence that demonstrates compliance with Montreal Protocol. As ODSs decrease, the largest impact on stratospheric ozone by the end of the 21st century will be increases in greenhouse gases. The associated climate forcings, and the human responses to these forcings, represent major uncertainties for the future of the stratospheric ozone layer.  相似文献   

18.
19.
《Comptes Rendus Geoscience》2018,350(7):347-353
After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号