首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Studies of the Cariaco Basin on the continental shelf of Venezuela, as a part of the Carbon Retention In A Colored Ocean (CARIACO) program, have revealed that the chemistry of the deeper waters of the system is more variable than previously believed. Small oxygen maxima have been observed on a number of occasions at depths where oxygen was previously absent, suggesting the occurrence of intrusions of oxygenated water into the region of the oxic/anoxic interface (250–300 m). Apparently because of these events, the oxic/anoxic interface deepened by about 100 m during the period of our observations. We also observed a dramatic decrease in H2S concentrations at all depths below the oxic/anoxic interface during this same period. Bottom waters, for example, had an H2S concentration of about 75 μM in November 1995, but since November 1997, concentrations in bottom water have not exceeded 55 μM. Water of sufficient density to sink to the bottom of the Basin has been observed on one occasion at sill depth just north of the eastern sill. However, based on a simple box model, the decrease in deep-water sulfide does not appear to be due to intrusion of oxygenated water alone, as concentrations of other measured species, and of hydrographic parameters, have remained constant with time. Instead, we postulate that an earthquake that took place in July 1997 resulted in a turbidity current that transported large quantities of coastal sediment containing oxidized iron into the deep waters of the basin. If the final products of reaction were elemental sulfur and iron sulfide, the sediment associated with the oxidized iron would have produced a turbidite layer about 10 cm thick. Previous earthquakes have produced turbidites of similar thickness.  相似文献   

2.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

3.
Sinking particles were collected every 4 h with drifting sediment traps deployed at 200 m depth in May 1995 in a 1-D vertical system during the DYNAPROC observations in the northwestern Mediterranean sea. POC, proteins, glucosamine and lipid classes were used as indicators of the intensity and quality of the particle flux. The roles of day/night cycle and wind on the particle flux were examined. The transient regime of production from late spring bloom to pre-oligotrophy determined the flux intensity and quality. POC fluxes decreased from, on average, 34 to 11 mg m−2 d−1, representing 6–14% of the primary production under late spring bloom conditions to 1–2% under pre-oligotrophic conditions. Total protein and chloroplast lipid fluxes correlated with POC and reflected the input of algal biomass into the traps. As the season proceeded, changes in the biochemical composition of the exported material were observed. The C/N ratio rose from 7.8 to 12. Increases of serine (10–28% of total proteins), total lipids (7–9 to 14–28% of POC) and reserve lipids (1–5 to 5–22% of total lipids) were noticeable, whereas total protein content in POC decreased (20–27 to 18–7%). N-acetyl glucosamine, a tracer of fecal pellet flux, showed that zooplankton grazing was a major vector of downward export during the decaying bloom. Against this background pattern, episodic events specifically increased the flux, modifying the quality and the settling velocity of particles. Day/night signals in biotracers (POC, N-acetyl glucosamine, protein and chloroplast lipids) showed that zooplankton migrations were responsible for sedimentation of fresh material through fast sinking particles (V=170–180 m d−1) at night. Periodic signatures of re-processed material (high lipolysis and bacterial biomass indices) suggested that other zooplankton fecal pellets or small aggregates, probably of lower settling velocities (V<170 m d−1), contributed to the flux during calm periods. At the beginning of the experiment, during the development of a prymnesiophyte bloom in the upper layers, the sterol signal with no periodicity enabled us to estimate high particle settling velocities (⩾600 m d−1) likely related to large aggregate formation. A wind event increased biotracer fluxes (POC, protein, chloroplast lipids). The rapid transmission of surface signals through extremely fast sinking particles could be a general feature of particle fluxes in marine areas unaffected by horizontal advection.  相似文献   

4.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

5.
The abundance, carbon isotopic composition (Δ14C and δ13C), and lipid biomarker (alkenones and saturated fatty acids) distributions of suspended particulate organic matter were investigated at three stations centered on the 2000, 3000, and 3500 m isobaths over the New England slope in order to assess particulate carbon sources and dynamics in this highly productive and energetic region. Transmissometry profiles reveal that particle abundances exhibit considerable fine structure, with several distinct layers of elevated suspended particulate matter concentration at intermediate water depths in addition to the presence of a thick bottom nepheloid layer at each station. Excluding surface water samples, the Δ14C values of particulate organic carbon (POC) indicated the presence of a pre-aged component in the suspended POC pool (Δ14C<+38‰). The Δ14C values at the 3000 m station exhibited greater variability and generally were lower than those at the other two stations where the values decreased in a more systematic matter with increasing sampling depth. These lower Δ14C values were consistent with higher relative abundances of terrigenous long-chain fatty acids at this station than at the other two stations. Two scenarios were considered regarding the potential provenances of laterally transported POC: cross-shelf transport of shelf sediment (Δ14C=?140‰) and along-slope transport of the slope sediment proximal to the sampling locations (Δ14C=?260‰). Depending on the scenario, isotopic mass balance calculations indicate allochthonous POC contributions ranging between 15% and 54% in the meso- and bathy-pelagic zone, with the highest proportions at the 3000 m station. Alkenone-derived temperatures recorded on suspended particles from surface waters closely matched in-situ temperatures at each station. However, alkenone-derived temperatures recorded on particles from the subsurface layer down to 250 m were lower than those of overlying surface waters, especially at the 3000 m station, implying supply of phytoplankton organic matter originally produced in cooler surface waters. AVHRR images and temperature profiles indicate that the stations were under the influence of a warm-core ring during the sampling period. The low alkenone-derived temperatures in the subsurface layer coupled with the lower Δ14C values for the corresponding POC suggests supply of OC on resuspended sediments underlying cooler surface waters distal to the study area, possibly further north or west. Taken together, variations in Δ14C values, terrigenous fatty acid abundances, and alkenone-derived temperatures among the stations suggest that input of laterally advected OC is a prominent feature of POC dynamics on the NW Atlantic margin, and is spatially heterogeneous on a scale smaller than the distance between the stations (<150 km).  相似文献   

6.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

7.
With the aim of improving the knowledge of the open ocean carbon cycle, we present a budget of particulate organic carbon (POC) fluxes carried out in the deep central part of the Algero-Balearic Basin (ABB) at 2850 m water depth based on a single mooring equipped with five automated sediment traps deployed from April 2001 to May 2002 at depths of 250, 845, 1440, 2145 and 2820 m. Suspended particulate matter (SPM) and superficial sediments were also used as indicators of hydrodynamics and carbon burial, respectively. The data reveal that the fraction of primary production buried in the sediment, which finally leads to the sequestration of carbon dioxide from the atmosphere, is 0.16%, lower than the values found in the nearby continental margin regions such as the Alboran Sea (0.48–0.89%) but of the same order as recorded at other Mediterranean sites at similar depths, such as the Ionian Sea (0.11%). As they sink through the water column, the particles exhibit decreases in flux that are similar to those observed elsewhere, but also show variations that appear to correlate with hydrological features of the water masses present in the basin, as revealed by SPM concentrations and compositions. The input of the tyrrhenian deep water (TDW) into the ABB at 800–1500 m of water depth exhibits low suspended POC concentrations and low sinking POC fluxes were also observed in this depth range. Gulf of Lions water mass formation appears to also contribute to elevated suspended POC concentrations and perhaps POC accumulation in the traps and sediments by spreading of dense cold water along the whole ABB that supplied POC at depths higher than 2000 m.  相似文献   

8.
Photochemical production rates of hydrogen peroxide (H2O2) were determined in Antarctic waters during two research cruises. The first cruise was from mid-October to mid-November, 1993, in the confluence of the Weddell and Scotia Seas, and the second cruise was in December, 1994, along the coast of the Antarctic Peninsula. During these cruises, midday sea-surface production rates ranged from 2.1 to 9.6 nM h−1, with an average rate of 4.5 nM h−1. Production rates were consistently smaller than rates determined at lower latitudes (>9 nM h−1), primarily due to the colder temperatures and lower ultraviolet irradiances in polar waters. In situ production rates were determined with a free-floating drifter that was deployed for 12–14 h. Production rates, averaged over the deployment time, were highest at or near the surface (ca. 2.4–3.5 nM h−1) and decreased rapidly with depth to 0.1–0.7 nM h−1 at 10–20 m. The decrease in production rates with depth generally paralleled the decrease in ultraviolet irradiance in the water column. Production rates of hydrogen peroxide in Antarctic seawater were largely controlled by the ultraviolet irradiance in the water column, although there was some evidence for production in the blue region of the solar spectrum. A laboratory study was conducted to determine the wavelength dependence of the apparent quantum yield for the photochemical formation of hydrogen peroxide in Antarctic waters. Apparent quantum yields determined at 0°C decreased from 0.74×10−3 mol einstein−1 at 290 nm to 1.0×10−5 mol einstein−1 410 nm. At 20°C, apparent quantum yields for the photochemical production of hydrogen peroxide were within a factor of two of apparent quantum yields determined in temperate waters at 20–25°C. Sunlight-normalized H2O2 production rates were determined as a function of wavelength using noontime irradiance data from Palmer Station, Antarctica. A decrease in stratospheric ozone from 336 to 151 Dobson units resulted in a predicted 19–42% increase in the photoproduction of H2O2 at the sea surface in Antarctic waters. The magnitude of this increase depends on the concentration and absorbance characteristics of dissolved organic matter in the photic zone, as well as on other factors such as cloudiness and decreasing solar zenith angle that tend to lower photochemical rates offsetting increases due to stratospheric ozone depletion.  相似文献   

9.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

10.
The relationship between particulate organic carbon (POC) concentrations measured in modern sediment and fluxes of exported POC to the sediment surface needs to be understood in order to use POC content as a proxy of paleo-environmental conditions. The objective of our study was to compare POC concentrations, POC mineralization rates calculated from O2 consumption and POC burial rates. Benthic O2 distributions were determined in 58 fine-grained sediment cores collected at different periods at 14 stations in the southeastern part of the Bay of Biscay with depths ranging from 140 to 2800 m. Depth-dependent volume-specific oxygen consumption rates were used to assess rates of aerobic oxidation of organic matter (OM), assuming that O2 consumption solely was related to heterotrophic activity at the sediment–water interface. Heterogeneity of benthic O2 fluxes denoted changes in time and space of fresh organic material sedimentation. The most labile fraction of exported POC engendered a steep decrease in concentration in the upper 5 mm of vertical O2 profiles. The rupture in the gradient of O2 microprofile may be related to the bioturbation-induced mixing depth of fast-decaying carbon. Average diffusive O2 fluxes showed that this fast-decaying OM flux was much higher than buried POC, although diffusive O2 fluxes underestimated the total sediment oxygen demand, and thus the fast-decaying OM flux to the sediment surface. Sedimentary POC burial was calculated from sediment mass accumulation rate and the organic carbon content measured at the top of the sediment. The proportion of buried POC relative to total exported POC ranged at the most between 50% and 10%, depending on station location. Therefore, for a narrow geographic area like the Bay of Biscay, burial efficiency of POC was variable. A fraction of buried POC consisted of slow-decaying OM that was mineralized within the upper decimetres of sediment through oxic and anoxic processes. This fraction was deduced from the decrease with depth in POC concentration. At sites located below 500 m water depth, where the fast-decaying carbon did not reach the anoxic sediment, the slow-decaying pool may control the O2 penetration depth. Only refractory organic material was fossilized in sedimentary records at locations where labile OM did not reach the anoxic portion of the sediment.  相似文献   

11.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

12.
Sulfate reduction rate measurements by the 35SO42− core injection method were carried out in situ with a benthic lander, LUISE, and in parallel by shipboard incubations in sediments of the Black Sea. Eight stations were studied along a transect from the Romanian shelf to the deep western anoxic basin. The highest rates measured on an areal basis for the upper 0–15 cm were 1.97 mmol m−2 d−1 on the shelf and 1.54 mmol m−2 d−1 at 181 m water depth just below the chemocline. At all stations sulfate reduction rates decreased to values <3 nmol cm−3 d−1 below 15 cm depth in the sediment. The importance of sulfate reduction relative to the total mineralization of organic matter was very low, 6%, on the inner shelf, which was paved with mussels, and increased to 47% on the outer shelf at 100 m depth. Where the oxic–anoxic interface of the water column impinged on the sea floor at around 150 m depth, the contribution of sulfate reduction increased from >50% just above the chemocline to 100% just below. In the deep sea, mean sulfate reduction rates were 0.6 mmol m−2 d−1 corresponding to an organic carbon oxidation of 1.3 mmol m−2 d−1. This is close to the mean sedimentation rate of organic carbon over the year in the western basin. A comparison with published data on sulfate reduction in Black Sea sediments showed that the present results tend to be higher in shelf sediments and lower in the deep-sea than most other data. Based on the present water column H2S inventory and the H2S flux out of the sediment, the calculated turnover time of H2S below the chemocline is 2100 years.  相似文献   

13.
The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January–March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, ≤5 mg GX eq. m−2 d−1, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.  相似文献   

14.
Solid sediment, pore and epibenthic waters were collected from the Thau lagoon (France) in order to study the post-depositional partition and mobility of mercury in organic rich sediment. Total Hg (HgT) and monomethylmercury (MMHg) profiles were produced in both dissolved and solid phases. The distribution of HgT in the solid phase appeared to be related to the historical changes in the Hg inputs into the lagoon. HgT was in equilibrium between solid and solution phases in the sulfidic part of the cores, with a mean log Kd of 4.9 ± 0.2. The solid phase appeared to be a source of HgT for pore water in the upper oxic to suboxic parts of the cores. The MMHg represented a small fraction of HgT: 3–15% and 0.02–0.80% in the dissolved and solid phases, respectively. Its distribution was characterized by a main peak in the superficial sediments, and another deeper in the core within the sulfide-accumulating zone. In addition, high dissolved MMHg concentrations and methylated percentage were found in the epibenthic water. Ascorbate (pH 8) dissolution of the sediments and analyses of the soluble fraction suggest that the amorphous oxyhydroxides played a major role in controlling total and methylmercury mobility throughout the sediment–water interface. These features are discussed in terms of sources, transfer and transformations. Diffusive fluxes of HgT and MMHg from sediment to the water column for the warm period were estimated to be 40 ± 15 and 4 ± 2 pmol m−2 d−1, respectively.  相似文献   

15.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

16.
Compositions and fluxes of amino acids and major chloropigments were measured in the central equatorial Pacific Ocean as part of the US JGOFS EqPac program. Fluxes decreased by several orders of magnitude, from 400 to 0.03 mg amino acid m−2 d−1 and from 9 mg to 0.0004 μg chloropigment m−2 d−1, between production in the surface waters and accumulation at the sea floor. Most rapid losses were in surface waters and at the sediment interface. Losses from the mid-water column were as great as those in surface waters or at the sediment interface, but occurred over a much greater depth range. Export flux estimates based on floating sediment traps were higher near the equator and decreased poleward, similar to primary production.Little meridional difference was apparent in composition of either amino acids or pigments in exported material over the 24° of latitude sampled in spite of the large (factor of 5–6) difference in fluxes. However, pigment composition changed dramatically with depth in the water column, and considerable diagenesis occurred before particles reached the sediment. Pigment compositions suggest that suspended particles were more degraded in the northern than in the southern hemisphere, possibly due to differences in food chain structure. Compositional changes in amino acids occurred in the water column, but were most noticeable at the sediment–seawater interface. Increases in the relative proportions of aspartic acid and glycine with depth were more consistent with preferential preservation within the particulate matrix than with any inherent stability of these compounds to heterotrophic consumption. The contribution of amino acids and pigments to total organic carbon clearly shows that selective degradation of organic matter occurs with depth; this is not evident from total organic carbon data alone. Amino acids contributed about a quarter of the total organic carbon (OC) in surface waters and 16% of the OC in sediment; pigments decreased from 1% of total OC in surface waters to <0.001% in sediments. Decreases in the contribution of amino acids to total organic carbon may be due to transformation into uncharacterizeable material as well as to respiration.  相似文献   

17.
234Th was used to quantify sinking fluxes and residence times of particles in surface waters of the north-western Mediterranean Sea. Measurements of dissolved and particulate 234Th were made at the DYFAMED station (43°25′N–7°51′E, JGOFS-France program). Sampling covered 1 year on four cruises in 1994 (February 9, April 29, June 3, October 1) and focused on a transition period in mid-spring with six repeated profiles collected during May 1995. 234Th was nearly in equilibrium with its parent 238U most of the year, except in spring. The intensive sampling in May shows a rapid evolution throughout the month from a moderate 234Th deficit to near-equilibrium values. The time-series of 234Th were treated with steady-state and non-steady-state models. 234Th particulate fluxes clearly indicate large variability in export, with the highest values observed in spring. Particle residence times in the upper 40 m range from <10 to >250 days, and could increase by a factor of 10 within 2 weeks. POC fluxes from the upper 40 m and export ratios (ThE: ratio of 234Th-derived POC export to primary production), derived from the 234Th/238U disequilibrium in the water column and POC/234Th ratio on trapped material, decrease from about 9.5 mmol C m−2 d−1 and >22% in early May to less than 5 mmol C m−2 d−1 and 15% after mid-May. The 234Th-derived information is in agreement with the annual variations in Mediterranean Sea productivity.  相似文献   

18.
This study was performed in order to obtain information on the influence of an acute anoxic event (September, 1997) on distribution and speciation of inorganic iodine in the water column of a small, intensely eutrophicated salt lake. The variations in iodate and iodide depth distributions during the investigated period (1998–2000) were in accord with seasonal changes in redox conditions. During the stratification period (spring and summer), the concentration ratio between iodate and iodide in the upper layers was high, whereas during late summer and autumn, as a result of water column de-stratification and mixing of highly reducing deep water with the oxic layer, lower ratios and more uniform depth distributions were observed.The massive mortality of lake organisms induced by anoxic conditions and sulphide presence throughout the water column was registered by the end of September 1997, when overturn of the lake occurred. The concentrations of iodate in the oxic upper layers were elevated for more than a year after the mass-mortality event (up to 0.55 μmol L−1), whereas iodide concentrations remained high for more than 2 years in deep anoxic water (up to 2.27 μmol L−1). These data suggest that biogeochemical renewal processes affecting the concentrations of inorganic iodine in the lake water are slow compared to those that govern the speciation of iodine. The role of sediment–water interactions and iodine-rich organic species in the production of iodide are discussed.  相似文献   

19.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

20.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号