首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.  相似文献   

2.
Deep-sea benthic communities derive their energetic requirements from overlying surface water production, which is deposited at the seafloor as phytodetritus. Benthic invertebrates are the primary consumers of this food source, with deep-sea fish at the top of the trophic hierarchy. Recently, we demonstrated with the use of baited cameras that macrourid fish rapidly respond to and feed vigorously on large plant food falls mimicked by spinach (Jeffreys et al., 2010). Since higher plant remains are scarce in the deep-sea, with the exception of canyons, where terrestrial material has been observed, these results led us to ask if a more commonly documented plant material i.e. phytodetritus might form a food source for deep-sea fish and mobile scavenging megafauna. We simulated a phytodetritus dump at the seafloor in two contrasting environments (1) the NE Atlantic where carpets of phytodetritus have been previously observed and (2) the oligotrophic western Mediterranean, where the deposition of phytodetritus at the seafloor is a rare occurrence. We recorded the response of the scavenging fauna using an in situ benthic lander equipped with baited time-lapse cameras. In the NE Atlantic at 3000 m, abyssal macrourids and cusk-eels were observed ingesting the phytodetritus. The phytodetrital patch was significantly diminished within 2 h. Abundance estimates calculated from first arrival times of macrourids at the phytodetrital patch in the Atlantic corresponded with abundance estimates from video-transect indicating that fish were attracted to the scent of phytodetrital bait. In contrast to this, in the western Mediterranean at 2800 m a single macrourid was observed investigating the phytodetrital patch but did not feed from it. The phytodetrital patch was significantly diminished within 6.5 h as a result of mainly invertebrate activity. At 1900 m, Lepidion lepidion was observed near the lander and the bait, but did not feed. The phytodetrital patch remained intact until the end of the experiment. In the deployments in the Mediterranean abundance estimates from first arrival times at the bait, corrected for their body size, were lower than estimates obtained from video-transects and trawl catches. This suggests that the Mediterranean fish were not readily attracted to this food source. In contrast, invertebrates in the Balearic Sea were observed ingesting the phytodetritus bait despite the rare occurrence of phytodetritus dumps in the Mediterranean. Stable isotope values of the fish at both study sites, set within the context of the benthic food web, did not demonstrate a strong trophic link to phytodetritus. Fatty acid profiles of these fish indicated a strong link between their lipid pool and primary producers i.e. phytoplankton, which may be attributed to trophic transfer. The usefulness of fatty acid biomarkers in ascertaining deep-sea fish diets is discussed. Our study suggests that the abyssal grenadier C. armatus on the Atlantic Iberian margin is attracted to phytodetritus. However the exact contribution of this food source to the diet of macrourids in this area remains unresolved.  相似文献   

3.
We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C15, anteiso-C17, and C17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4–6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.  相似文献   

4.
The recent benthic meiofaunal foraminiferal assemblage from the continental slope (590-2 003 m) off Cape Hatteras, North Carolina exhibits high species richness and evenness, moderate diversity values, and lacks numerically dominant species. The preserved planktic assemblage has relatively low species richness, high evenness, low diversity, and a few numerically dominant species. Approximately 9% of the benthic species are those that typically live within continental shelf depth ranges. The benthic assemblage abundances and diversities do not follow depth patterns or geophysical characteristics. No biogeographic boundary can be described within the study area for meiofaunal foraminifera. Oxygen limitation does not appear to be a factor affecting the benthos of the North Carolina continental slope based upon the community structure of the benthic foraminifera, if total assemblage is assumed to reflect the recently living community. The high carbonate content of sediments in the area may be explained by foraminiferal tests. Within the study area, the foraminiferal assemblages are uniform, and probably reflect relative consistency of primary environmental variables as well as dynamic downslope transport and high influx of material from the water column in the vicinity where the Gulf Stream and the Western Boundary Undercurrent cross.  相似文献   

5.
The stable isotopic composition of benthic foraminifera has been widely used to reconstruct deep-ocean circulation, but questions have been raised about the influence of organic carbon flux on the carbon isotopic composition of deep-sea taxa. We show that annual and seasonality of primary productivity in the North Atlantic do not affect δ13C of Planulina wuellerstorfi, but that the intermittency or seasonality of primary production has a significant effect (0.9‰ change over 60° latitude) on δ13C of Epistominella exigua, reflecting the influence of pelagic-benthic coupling and microhabitat preferences on test geochemistry. These results support the use of δ13C of P. wuellerstorfi in paleocirculation studies and suggest that the δ13C of E. exigua can be used to reconstruct seasonality of productivity.  相似文献   

6.
Marine isotope stage (MIS) 9 is one of the least investigated Pleistocene interglaciations. The present study describes reconstructions of deep-water conditions during this time interval based on benthic foraminiferal assemblages from sediment core M23414 (Rockall Plateau, North Atlantic). The results of faunal analysis were supported by planktic δ18O, sea surface temperature reconstructions based on planktic foraminiferal assemblages and content of ice rafted debris. Statistical data processing using principal component analysis revealed five climate-related benthic foraminiferal associations that changed in response to alterations of deep-water circulation.  相似文献   

7.
During September and October 1996 planktic foraminifers and pteropods were sampled from the upper 2500 m of the water column in the BIOTRANS area (47°N, 20°W), eastern North Atlantic, as part of the JGOFS program. Hydrography, chlorophyll fluorescence, and nutrient content were recorded at high spatial and temporal resolution providing detailed information about the transition time between summer and fall. At the beginning of the cruise a shallow pycnocline was present and oligotrophic conditions prevailed. Over the course of the cruise, the mixed layer depth increased and surface water temperature decreased by 1.5°C. Both chlorophyll-a dispersed in the upper 50 m by vertical mixing and chlorophyll-a concentrations at the sea surface increased. The nitracline shoaled and nutrient enriched waters were entrained into the mixed layer. Planktic foraminifers and pteropods closely reflected the changes in the hydrography by increased growth rates and changes in species composition. Three main groups of planktic foraminiferal species were recognized: (1) a temperate and low-productivity group dominated by Neogloboquadrina incompta characterized the shallow mixed layer depths. (2) A temperate and high-productivity group dominated by Globigerina bulloides characterized the period with wind-induced dispersal of chlorophyll-a and entrainment of nutrient-enriched waters. (3) A warm water group containing Globigerinoides sacculifer, Orbulina universa, Globigerinoides ruber (white), and Globigerinella siphonifera was most common during the first days of sampling. Synchronous with the hydrographic change from summer to fall, planktic foraminiferal and pteropod growth was stimulated by redistribution of chlorophyll-a and entrainment of nutrient-enriched waters into the mixed layer. In addition, the seasonal change in the eastern North Atlantic resulted in a transition of the epipelagic faunal composition and an increased calcareous particle flux, which could be used to trace seasonality in fossil assemblages and allow for better paleoceanographic interpretation of the boreal Atlantic.  相似文献   

8.
通过对中国第1~4次北极考察在西北冰洋采集的表层沉积物中底栖有孔虫丰度及其优势种分布特征与环境因素关系的综合研究发现,楚科奇海区低的底栖有孔虫丰度主要受较高的陆源物质输入的稀释作用影响;楚科奇海台和阿尔法脊较高的底栖有孔虫丰度主要受到暖而咸的大西洋中层水的影响;受碳酸钙溶解作用影响的门捷列夫深海平原和加拿大海盆底栖有孔虫丰度较低,并且水深3 597 m的站位出现了似瓷质壳的Pyrgo williamsoniQuinqueloculina orientalis,说明该区的CCD深度大于3 600 m。根据底栖有孔虫7个优势属种的百分含量分布特征可以划分出5个区域组合:南楚科奇海陆架-白令海峡组合以优势种Elphidium excavatumBuccella frigida为特征,可能反映受白令海陆架水影响的浅水环境;阿拉斯加沿岸-波弗特海组合以优势种Florilus scaphusElphidium albiumbilicatum为特征,可能反映受季节性海冰融化,低盐的阿拉斯加沿岸流以及河流淡水输入的低盐环境;大西洋中层水组合以优势种Cassidulina laevigata为特征,可能反映高温高盐的大西洋中层水影响的环境;北极深层水组合以优势种Cibicides wuellerstorfi为特征,可能反映水深大于1 500 m低温高盐的北极深层水环境;门捷列夫深海平原组合以优势种Oridorsalis umbonatus为特征,可能反映低营养的底层水环境。  相似文献   

9.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   

10.
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N–20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is “mirrored” by deep-sea benthic processes.  相似文献   

11.
Deep-sea benthic ecosystems are sustained largely by organic matter settling from the euphotic zone. These fluxes usually have a more or less well-defined seasonal component, often with two peaks, one in spring/early summer, the other later in the year. Long time-series datasets suggest that inter-annual variability in the intensity, timing and composition of flux maxima is normal. The settling material may form a deposit of “phytodetritus” on the deep-seafloor. These deposits, which are most common in temperate and high latitude regions, particularly the North Atlantic, evoke a response by the benthic biota. Much of our knowledge of these responses comes from a few time-series programmes, which suggest that the nature of the response varies in different oceanographic settings. In particular, there are contrasts between seasonal processes in oligotrophic, central oceanic areas and those along eutrophic continental margins. In the former, it is mainly “small organisms” (bacteria and protozoans) that respond to pulsed inputs. Initial responses are biochemical (e.g. secretion of bacterial exoenzymes) and any biomass increases are time lagged. Increased metabolic activity of small organisms probably leads to seasonal fluctuations in sediment community oxygen consumption, reported mainly in the North Pacific. Metazoan meiofauna are generally less responsive than protozoans (foraminifera), although seasonal increases in abundance and body size have been reported. Measurable population responses by macrofauna and megafauna are less common and confined largely to continental margins. In addition, seasonally synchronised reproduction and larval settlement occur in some larger animals, again mainly in continental margin settings. Although seasonal benthic responses to pulsed food inputs are apparently widespread on the ocean floor, they are not ubiquitous. Most deep-sea species are not seasonal breeders and there are probably large areas, particularly at abyssal depths, where biological process rates are fairly uniform over time. As with other aspects of deep-sea ecology, temporal processes cannot be encapsulated by a single paradigm. Further long time-series studies are needed to understand better the nature and extent of seasonality in deep-sea benthic ecosystems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Modern and fossil benthic foraminifera were examined from nine surface sediments and two piston cores along the ~131°W transect in the equatorial Pacific Ocean. This study was conducted to clarify the biotic response of abyssal benthic foraminifera during the last 220 ka to changes in the seasonal extent of the Intertropical Convergence Zone (ITCZ). The abundance of modern benthic foraminifera was high at stations between the equator and 6°N, whereas it was low at stations north of 6°N, which is generally consistent with the latitudinal CaCO3 distribution of surface sediments. The northward increase of Epistominella exigua from the equator to ~6°N is similar to the seasonal variations in chlorophyll-a concentrations in the surface water and ITCZ position along ~131°W. This species was more common at core PC5103 (~6°N) than at core PC5101 (~2°N) after ~130 ka, when the Shannon-Wiener diversity (H’) between the two cores started to diverge. Hence, the presentday latitudinal difference in benthic foraminifera (E. exigua and species diversity) between ~2°N and ~6°N along ~131°W has been generally established since ~130 ka. According to the modern relationship between the seasonality of primary production and seasonal ITCZ variations in the northern margin of the ITCZ, the latitudinal divergence of benthic foraminiferal fauna between ~2°N and ~6°N since ~130 ka appear to have been induced by more distinct variations in the seasonal movement of ITCZ.  相似文献   

13.
Bathymetric patterns of macrofaunal species diversity are best documented in the western North Atlantic where diversity is a unimodal function of depth, peaking in the mid-bathyal zone and being depressed in the upper slope and abyss. There are few inter-basin studies of diversity-depth trends that are controlled for taxonomy, sampling gear, and diversity measures. In this paper, we compare gastropod diversity gradients in the North American Basin of the Atlantic to estimates of diversity in 9 other regions: the Norwegian Sea, West European Basin, Guiana Basin, Gambia Basin, Equatorial Mid-Atlantic, Brazil Basin, Angola Basin, Cape Basin and Argentine Basin. All samples were collected with epibenthic sleds, and diversity calculated by the Sanders-Hurlbert normalized expected number of species. While sampling in other regions is generally less complete than in the western North Atlantic, results indicate that a unimodal pattern is not universal. Diversity can increase, decrease or show no relationship with depth. The level of diversity also varies among basins relative to the western North Atlantic, being depressed in the Norwegian Sea, at bathyal depths in the eastern North Atlantic, and below an oxygen minimum zone in the Cape Basin, and generally elevated at tropical latitudes and in abyssal regions where food supply is high. Associations between gastropod diversity and the ecology and geology of basins suggest that productivity, oxygen concentration, hydrographic disturbance and evolutionary-historical processes may be implicated in shaping bathymetric diversity gradients, but specific causes are difficult to discern. Much more intensive sampling, analyses of other major taxa, and more detailed ecological data are necessary to understand deep-sea biogeography at within- and between-basin spatial scales.  相似文献   

14.
Demersal fish data from 9 deep-sea surveys in the North Atlantic were examined to assess (1) the coherence and continuity of zones around the ocean basin, and (2) the persistence of structured communities over more than just a local scale. The 63 cruises took 96,779 specimens and 325 species in 692 benthic trawl hauls between 204 and 5345m depth. Measures of similarity and overlap applied to this faunal data did not produce patterns other than those reflecting the occurrence of two widespread and abundant species - Synaphobranchus kaupi at slope depths and Nematonurus armatus on the rise. Communities defined within a survey area by commonly-used analytical procedures cannot be identified from place to place over broader areas, and the concept along with its implication should be abandoned.  相似文献   

15.
Unusually dense assemblages of benthic infaunal invertebrates have been discovered in continental slope sediments off Cape Hatteras, North Carolina. Densities were highest on the upper slope, ranging from 24,055 to 61,244 (X¯=46,255) individuals m−2 in nine samples taken at a 600-m site in 1984 and 1985, and from 15,522 to 89,566 (X¯=37,282) individuals m−2 in single samples at 15 stations over a wider depth range of 530 to 1535 m in 1992. A lower slope station at 2000 m sampled six times in 1984–1985 and again in 1992, had densities consistently higher than 8500 individuals m−2. Species richness and diversity are consistently lower on the Cape Hatteras slope than at other locations off North Carolina and elsewhere in the western North Atlantic. The 1992 studies indicated that the upper slope infaunal assemblages (600m) were dominated by oligochaetes, while the middle slope assemblages (800–1400 m) were dominated by the polychaeteScalibregma inflatum. This latter depth range could be defined into two assemblages based upon suites of less abundant species. At depths of 1500–2000 m, a lower slope assemblage dominated by various deposit feeding polychaetes and oligochaetes was found. Results from the 1984–1985 studies suggest seasonal or year-to-year patterns in the dominance ofS. inflatum andCossura longocirrata. Unusually high sedimentation rates and organic carbon flux have been recorded from the slope off Cape Hatteras and may account for the high infaunal productivity in the area. Most of the dominant infaunal organisms are species more typical of shallow, coastal habitats rather than deep-sea species that dominate other areas of the U.S. Atlantic continental slope. Parallel investigations regarding the nature of organic matter in the Cape Hatteras sediments have revealed a mixture of both marine and terrestrially derived carbon, only a small percentage of which is composed of the smaller molecular weight polyunsaturated fatty acids more typical of continental slope sediments. It is likely that the high percentage of refractory organic matter would favor the survival of preadapted shelf species over those from adjacent slope environments.  相似文献   

16.
The rough pen shell Pinna rudis Linnaeus, 1758 (family Pinnidae), a mollusc with an Atlantic–Mediterranean distribution, is able to live in coarse sandy substrates. Considering its shell structure and ecological characteristics, P. rudis can enhance biodiversity by providing a substrate for settlement on its shell. For this reason, we compared the diversity of benthic taxa around P. rudis shells with the species diversity on P. rudis shells, at Matiota Beach, São Vicente Island, Cabo Verde. We sampled an area of 900 m2 and recorded data in situ to estimate the population size of P. rudis and the epibiotic and benthic community diversity. The average density of P. rudis estimated in the sampled area was 6.6 ind. 100 m–2 and the highest density was found at between 2 and 3 m depth, mostly in biogenic and sandy substrates. The epibiotic species diversity on P. rudis shells was significantly higher than the species diversity in the microhabitat around the shells. The P. rudis shell seems to play an important role in increasing the biodiversity of the ecosystem, with some species found only as epibionts on P. rudis.  相似文献   

17.
Based on a quantitative analysis of foraminifera in 39 surface samples of the Bering andChukchi Seas, the nearly absence of planktonic foraminifera in the surface sediments can be related to the low surface primary productivity and strong carbonate dissolution in the study area. It has been revealed that the surface primary productivity, and carbonate dissolution and properties of water masses related to the water depth mainly control the distribution of benthic foraminifera. The shelf of the Chukchi Sea is dominated by the Elphidium spp. assemblage and Nonionella robusta assemblage with low foraminiferal abundance and diversity, which is controlled by the coastal water mass of the Arctic Ocean. The slope of the Bering Sea is dominated by the Uvigerina peregrina - Globobulimina affinis assemblage with abundant N. robusta, and relatively high foraminiferal abundance and diversity, which is controlled by the intermediate and deep water masses of the Pacific Ocean. However, the Bering Sea has relatively sha  相似文献   

18.
Trends in the abundance, diversity and taxonomic composition of ‘live’ (rose Bengal stained) foraminiferal assemblages (0-1 cm layer, >63-μm fraction) were analysed in replicate multiple corer samples collected at the Porcupine Abyssal Plain (48° 50’ N, 16° 30’ W, 4850 m water depth) over a 13-yr period (1989-2002). Total densities were significantly higher in 1996-2002 compared to 1989-1994, a change coincident with a spectacular rise in the density of the holothurian Amperima. However, total densities exhibited no significant relation to seasons or any significant correlation with modelled organic matter flux, the North Atlantic Oscillation (NAO) index, Amperima densities, or megafaunal assemblage composition. Over the same period, species richness and diversity measures decreased and dominance increased, although not significantly. Multivariate analyses revealed three assemblages represented by samples collected in 1989-1994, 1996-July 1997 and October 1997-October 2002. These reflected temporal changes in the densities of higher taxa and species. Trochamminaceans, notably a small undescribed species, increased from 5-9% (1989-1994) to 29-40% (1996-2002) of the assemblage with a corresponding rise in absolute abundance. Species of Hormosinacea and Lagenammina also tended to increase in density from 1996/1997 onwards. Rotaliids, dominated by Alabaminella weddellensis and Epistominella exigua, showed a bimodal distribution over time with peak densities in May 1991 (32%) and September 1998 (28%) and lowest densities in 1996-1997. Responses by these species to seasonal phytodetritus inputs probably explain the relative abundance of E. exigua, and to a lesser extent A. weddellensis, in 1989 and 1991 when phytodetritus was present. A qualitative change in the phytodetrital food, repackaging of food by megafauna, increased megafaunal disturbance of the surficial sediment, or a combination of these factors, are possible explanations for the dominance of trochamminaceans from 1996 onwards. The miliolid Quinqueloculina sp. was virtually absent in multicore samples (0-1 cm, >63-μm fraction) from 1989-1994, peaked in September 1996 (22%) when degraded phytodetritus was present on core surfaces, was less common in March 1997, and thereafter was relatively uncommon. However, horizontally sliced box-core samples (0-5 cm, >250-μm fraction) revealed that large specimens were more abundant in March 1997, and also were concentrated in deeper sediment layers, than in September 1996. We suggest that Quinqueloculina sp. migrated to the sediment surface in response to a 1996 flux event, grew and reproduced, before migrating back into deeper layers as the phytodetrital food became exhausted. Overall, the abyssal time-series revealed decadal-scale changes among shallow-infaunal foraminifera, more or less coincident with changes in the megafauna, as well as indications of shorter-term events related to seasonally-pulsed phytodetrital inputs.  相似文献   

19.
In order to assess the possible environmental impact of oily cuttings discharged during oil exploration activities, we studied the benthic foraminiferal faunas in a five-station, 4-km-long sampling transect around a cuttings disposal site at about 670 m depth offshore Angola (W Africa), where drilling activities started 1.5 years before sampling. Living (Rose Bengal stained) and dead foraminiferal faunas were sampled in March 2006. The faunal patterns mirror the spatial distribution of hydrocarbons, which are dispersed into a southeastern direction. Four different areas can be distinguished on the basis of the investigated faunal parameters (density, diversity and species composition of the living fauna, and comparison with subrecent dead faunas). The fauna at station S31, 300 m SE of the oil cuttings disposal site, appears to be clearly impacted: the faunal density and diversity are maximal, but evenness is minimal. Taxa sensitive to organic enrichment, such as Uvigerina peregrina, Cancris auriculus and Cribrostomoides subglobosus, have largely disappeared, whereas the low-oxygen-resistant taxon Chilostomella oolina and opportunistic buliminids and bolivinids attain relatively high densities. At station S32, 500 m SE of the disposal site, environmental impact is still perceptible. The faunal density is slightly increased, and U. peregrina, apparently the most sensitive species, is still almost absent. The faunas found at 1 and 1.8 km SE of the disposal site are apparently no longer impacted by the drill mud disposal. Faunal density and diversity are low, and the faunal composition is typical for a mesotrophic to eutrophic upper slope environment. Finally, Station S35, 2 km NW of the disposal site, contains an intermediate fauna, where both the low-oxygen-resistant C. oolina and the more sensitive taxa (U. peregrina, C. auriculus and C. subglobosus) are present. All taxa live close to the sediment–water interface here, indicating a reduced oxygen penetration into the sediment. Since the hydrocarbon concentration is low at this station, it appears that the faunal characteristics are the consequence of a slightly different environmental setting, and not due to a contamination with drill cuttings. Our data underline the large potential of benthic foraminifera as bio-indicators of anthropogenic enrichment in open marine settings, such as caused by the disposal of oily drill cuttings. The foraminiferal faunas react essentially by a density increase of a number of tolerant and/or opportunistic taxa, and a progressive disappearance of more sensitive taxa in the most impacted area. Rather surprisingly, large-sized taxa appear to be more sensitive than small-sized foraminiferal taxa.  相似文献   

20.
Remotely operated vehicle (ROV) video observations were used to document benthic fauna at a hydrocarbon drilling location, at 2 720 m depth, in the poorly studied deep water off northern Egypt. The decapod Chaceon mediterraneus was the most common organism at the site and the only benthic megafaunal invertebrate observed. Three species of fish, Coryphaenoides mediterraneus, Cataetyx laticeps and Bathypterois mediterraneus, were also encountered. These findings confirmed these three species as the deepest-distributed benthic fish in the eastern Mediterranean, and confirmed that the deep Mediterranean, in particular the eastern basin, is one of the world's poorest deep-sea ecosystems in terms of diversity. The behaviour exhibited by the species observed was consistent with their natatory capacity, deduced from their feeding intensity (gut fullness) and diet (mainly suprabenthic prey were consumed), and conservative life strategies adapted to an extremely low energy environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号