首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

2.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

3.
The diffusive component of the particulate organic carbon (POC) export from the ocean's surface layer has been estimated using a combination of the mixed layer model and SeaWiFS ocean color data. The calculations were carried out for several example sites located in the North Atlantic over a 10-year time period (1998–2007). Satellite estimates of surface POC derived from ocean color were applied as an input to the model driven by local surface heat and momentum fluxes. For each year of the examined period, the diffusive POC flux was estimated at a 200 m depth. The highest flux is generally observed in the spring and fall seasons, when surface waters are weakly stratified. In addition, the model results demonstrate significant interannual and geographical variability of the flux. The highest diffusive POC flux occurs in the northern North Atlantic and the lowest in the subtropical region. The interannual variability of the diffusive POC flux is associated with mixed layer dynamics and underscores the importance of atmospheric forcing for POC export from the surface layer to the ocean's interior.  相似文献   

4.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

5.
The Arctic Ocean has wide shelf areas with extensive biological activity including a high primary productivity and an active microbial loop within the surface sediment. This in combination with brine production during sea ice formation result in the decay products exiting from the shelf into the deep basin typically at a depth of about 150 m and over a wide salinity range centered around S ~33. We present data from the Beringia cruise in 2005 along a section in the Canada Basin from the continental margin north of Alaska towards the north and from the International Siberian Shelf Study in 2008 (ISSS-08) to illustrate the impact of these processes. The water rich in decay products, nutrients and dissolved inorganic carbon (DIC), exits the shelf not only from the Chukchi Sea, as has been shown earlier, but also from the East Siberian Sea. The excess of DIC found in the Canada Basin in a depth range of about 50–250 m amounts to 90±40 g C m?2. If this excess is integrated over the whole Canadian Basin the excess equals 320±140×1012 g C. The high DIC concentration layer also has low pH and consequently a low degree of calcium carbonate saturation, with minimum aragonite values of 60% saturation and calcite values just below saturation. The mean age of the waters in the top 300 m was calculated using the transit time distribution method. By applying a future exponential increase of atmospheric CO2 the invasion of anthropogenic carbon into these waters will result in an under-saturated surface water with respect to aragonite by the year 2050, even without any freshening caused by melting sea ice or increased river discharge.  相似文献   

6.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

7.
The present paper synthesizes data obtained during a multidisciplinary cruise carried out in June 2004 at the continental margin of the northern Bay of Biscay. The data-set allows to describe the different stages of a coccolithophore bloom dominated by Emiliania huxleyi. The cruise was carried out after the main spring phytoplankton bloom that started in mid-April and peaked in mid-May. Consequently, low phosphate (PO4 < 0.2 μM) and silicate (DSi < 2.0 μM) concentrations, low partial pressure of carbon dioxide (pCO2) and high calcite saturation degree in surface waters combined with thermal stratification, probably favoured the blooming of coccolithophores. During the period of the year our cruise was carried out, internal tides induce enhanced vertical mixing at the continental shelf break leading to the injection of inorganic nutrients to surface waters that probably trigger the bloom. The bloom developed as the water-column stratified and as the water mass was advected over the continental shelf, following the general residual circulation in the area. The most developed phase of the bloom was sampled in a remote sensed high reflectance (HR) patch over the continental shelf that was characterized by low chlorophyll-a (Chl-a) concentration in surface waters (<1.0 μg L?1), high particulate inorganic carbon (PIC) concentration (~8 μmol L?1) and coccolithophore abundance up to 57 × 106 cells L?1. Transparent exopolymer particles (TEP) concentrations ranged between 15 and 75 μg C L?1 and carbon content of TEP represented up to 26% of the particulate organic carbon (POC; maximum concentration of 15.5 μmol L?1 in the upper 40 m). Integrated primary production (PP) ranged between 210 and 680 mg C m?2 d?1 and integrated calcification (CAL) ranged between 14 and 140 mg C m?2 d?1, within the range of PP and CAL values previously reported during coccolithophore blooms in open and shelf waters of the North Atlantic Ocean. Bacterial protein production (BPP) measurements in surface waters (0.3–0.7 μg C L?1 h?1) were much higher than those reported during early phases of coccolithophore blooms in natural conditions, but similar to those during peak and declining coocolithophorid blooms reported in mesocosms. Total alkalinity anomalies with respect to conservative mixing (ΔTA) down to ?49 μmol kg?1 are consistent with the occurrence of biogenic precipitation of calcite, while pCO2 remained 15–107 μatm lower than atmospheric equilibrium (372 μatm). The correlation between ΔTA and pCO2 suggested that pCO2 increased in part due to calcification, but this increase was insufficient to overcome the background under-saturation of CO2. This is related to the biogeochemical history of the water masses due to net carbon fixation by the successive phytoplankton blooms in the area prior to the cruise, hence, the investigated area remained a sink for atmospheric CO2 despite calcification.  相似文献   

8.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   

9.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   

10.
Estimation of the silicon (Si) mass balance in the ocean from direct measurements (Si uptake-dissolution rates …) is plagued by the strong temporal and spatial variability of the surface ocean as well as methodological artifacts. Tracers with different sensitivities toward physical and biological processes would be of great complementary use. Silicon isotopic composition is a promising proxy to improve constraints on the Si-biogeochemical cycle, since it integrates over longer timescales in comparison with direct measurements and since the isotopic balance allows to resolve the processes involved, i.e. uptake, dissolution, mixing. Si-isotopic signatures of seawater Si(OH)4 and biogenic silica (bSiO2) were investigated in late summer 2005 during the KEOPS experiment, focusing on two contrasting biogeochemical areas in the Antarctic Zone: a natural iron-fertilized area above the Kerguelen Plateau (< 500 m water depth) and the High Nutrient Low Chlorophyll area (HNLC) east of the plateau (> 1000 m water depth). For the HNLC area the Si-isotopic constraint identified Upper Circumpolar Deep Water as being the ultimate Si-source. The latter supplies summer mixed layer with 4.0 ± 0.7 mol Si m? 2 yr? 1. This supply must be equivalent to the net annual bSiO2 production and exceeds the seasonal depletion as estimated from a simple mixed layer mass balance (2.5 ± 0.2 mol Si m? 2 yr? 1). This discrepancy reveals that some 1.5 ± 0.7 mol Si m? 2 yr? 1 must be supplied to the mixed layer during the stratification period. For the fertilized plateau bloom area, a low apparent mixed layer isotopic fractionation value (?30Si) probably reflects (1) a significant impact of bSiO2 dissolution, enriching the bSiO2 pool in heavy isotope; and/or (2) a high Si uptake over supply ratio in mixed layer at the beginning of the bloom, following an initial closed system operating mode, which, however, becomes supplied toward the end of the bloom (low Si uptake over supply ratio) with isotopically light Si(OH)4 from below when the surface Si(OH)4 pool is significantly depleted. We estimated a net integrated bSiO2 production of 10.5 ± 1.4 mol Si m? 2 yr? 1 in the AASW above the plateau, which includes a significant contribution of bSiO2 production below the euphotic layer. However, advection which could be significant for this area has not been taken into account in the latter estimation based on a 1D approach of the plateau system. Finally, combining the KEOPS Si-isotopic data with those from previous studies, we refined the average Si-isotopic fractionation factor to ? 1.2 ± 0.2‰ for the Antarctic Circumpolar Current.  相似文献   

11.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

12.
Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM)). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5–29.4 μg L−1) were higher than in samples from deep waters (3.2–9.3 μg L−1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13–25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.  相似文献   

13.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

14.
Size-fractionated chlorophyll-a and carbon incorporation rates were determined on a series of 13 cruises carried out from 1992 to 2001with the aim of investigating the patterns and causes of variability in phytoplankton chlorophyll and production in the Eastern North Atlantic Subtropical Gyral Province (NASE). Averaged (±SE) integrated chlorophyll-a concentration and primary production rate were 17±1 mg m−2 and 253±22 mg C m−2 d−1. Small-sized cells (<2 μm) formed the bulk of phytoplankton biomass (71%) and accounted for 54% of total primary production. A clear latitudinal gradient in these variables was not detected. By contrast, large seasonal variability was detected in terms of primary production, although integrated phytoplankton biomass, as estimated from chlorophyll-a concentration, remained rather constant and did not display significant changes with time. Variability in primary production (PP) was related mainly to variability in surface temperature and surface chlorophyll-a concentration. The control exerted by surface temperature was related to nutrient availability. By contrary, euphotic-zone depth, depth of maximum concentration of chlorophyll-a and integrated chlorophyll-a did not contribute significantly to the high variability in primary production observed in this oligotrophic region.  相似文献   

15.
This overview compares and contrasts trends in the magnitude of the downward Particulate Organic Carbon (POC) flux with observations on the vertical profiles of biogeochemical parameters in the NE subarctic Pacific. Samples were collected at Ocean Station Papa (OSP, 50°N, 145°W), between 18–22 May 1996, on pelagic stocks/rate processes, biogenic particle fluxes (drifting sediment traps, 100–1000 m), and vertical profiles of biogeochemical parameters from MULVFS (Multiple Unit Large Volume Filtration System) pumps (0–1000 m). Evidence from thorium disequilibria, along with observations on the relative partitioning of particles between the 1–53 μm and >53 μm classes in the 50 m mixed layer, indicate that there was little particle aggregation within the mixed layer, in contrast to the 50–100 m depth stratum where particle aggregation predominated. Vertical profiles of thorium/uranium also provided evidence of particle decomposition occuring at depths ca. 150 m; heterotrophic bacteria and mesozooplankton were likely responsible for most of this POC utilisation. A water column carbon balance indicated that the POC lost from sinking particles was the predominant source of carbon for bacteria, but was insufficient to meet their demands over the upper 1000 m. While, the vertical gradients of most parameters were greatest just below the mixed layer, there was evidence of sub-surface increases in microbial viability/growth rates at depths of 200–600 m. The C:N ratios of particles intercepted by free-drifting and deep-moored traps increased only slightly with depth, suggesting rapid sedimentation even though this region is dominated by small cells/grazers, and the upper water column is characterised by long particle residence times (>15 d), a fast turnover of POC (2 d) and a low but constant downward POC flux.  相似文献   

16.
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N2) fixation is estimated to supply 8×1012 moles N y?1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H2), but the extent to which it leads to supersaturation of H2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H2 concentration (nmol L?1), and rates of N2 fixation (μmol N m?3 d?1), determined using 15N2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation (r=0.98) between dissolved H2 and rates of N2 fixation, with the greatest supersaturation of H2 and highest rates of N2 fixation being observed in the subtropical gyres at the southern (~18°S) and northern (18°N) reaches of the transect. The lowest H2 saturation and N2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H2 supersaturations and N2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.  相似文献   

17.
Fish farming impact on the seasonal biomass, carbon and nutrient (nitrogen and phosphorus) balance of the endemic Mediterranean seagrass Posidonia oceanica was assessed in the Aegean Sea (Greece) in order to detect changes in magnitude and fate of seagrass production and nutrient incorporation with organic loading of the meadows. Phosphorus concentration in the leaves, rhizomes and roots was enhanced under the cages throughout the study. Standing biomass was diminished by 64% and carbon, nitrogen and phosphorus standing stock by 64%, 61% and 48%, respectively, under the cages in relation to those at the control. Seagrass production decreased by 68% and element (C, N, P) incorporation by 67%, 58% and 58%, respectively, under the cages. Leaf shedding was reduced by 81% and loss of elements (C, N, and P) through shedding by 82%, 74% and 72%, respectively, under the cages. Leaf and element (C, N, P) residual loss rate, accounting for grazing and mechanical breakage of leaves, was decreased by 79%, 85%, 100% and 96%, respectively, at the control station. At the control station, 13.98 g C m?2 yr?1, 1.91 g N m?2 yr?1 and 0.05 g P m?2 yr?1 were produced in excess of export and loss. In contrast, under the cages 12.69 g C m?2 yr?1, 0.31 g N m?2 yr?1 and 0.04 g P m?2 yr?1 were released from the meadow. Organic loading due to fish farm discharges transformed the seagrass meadow under the cages from a typical sink to a source of organic carbon and nutrients.  相似文献   

18.
Whereas diatoms (class Bacillariophyceae) often dominate phytoplankton taxa in the Amazon estuary and shelf, their contribution to phytoplankton dynamics and impacts on regional biogeochemistry are poorly understood further offshore in the western tropical Atlantic Ocean (WTAO). Thus, relative contribution of diatoms to phytoplankton biomass and primary production rates and associated environmental conditions were quantified during three month-long cruises in January–February 2001, July–August 2001, and April–May 2003. The upper water column was sampled at 6 light depths (100%, 50%, 25%, 10%, 1% and 0.1% of surface irradiance) at 64 stations between 3° and 14°N latitude and 41° and 58°W longitude. Each station was categorized as ‘oceanic’ or ‘plumewater’, based on principal component analysis of eight physical, chemical and biological variables. All stations were within the North Brazil Current, and plumewater stations were characterized by shallower mixed layers with lower surface salinities and higher dissolved silicon (dSi) concentrations than oceanic stations. The major finding was a much greater role of diatoms in phytoplankton biomass and productivity at plumewater stations relative to oceanic stations. Mean depth-integrated bSi concentrations at the plumewater and oceanic stations were 14.2 and 3.7 mmol m−2, respectively. Mean depth-integrated SiP rates at the plumewater and oceanic stations were 0.17 and 0.02 mmol m−2 h−1, respectively. Based on ratios of SiP and PP rates, and typical Si:C ratios, diatoms contributed on average 29% of primary productivity at plumewater stations and only 3% of primary productivity at oceanic stations. In contrast, phytoplankton biomass (as chlorophyll a concentrations) and primary production (PP) rates (as 14C uptake rates) integrated over the euphotic zone were not significantly different at plumewater and oceanic stations. Chlorophyll a concentrations ranged from 8.5 to 42.4 mg m−2 and 4.0 to 38.0 mg m−2 and PP rates ranged from 2.2 to 11.2 mmol m−2 h−2 and 1.8 to 10.8 mmol m−2 h−2 at plumewater and oceanic stations, respectively. A conservative estimate of annual integrated SiP in offshore waters of Amazon plume between April and August is 0.59 Tmol Si, based on mean SiP rates in plumewaters and satellite-derived estimates of the area of the Amazon plume. In conclusion, river plumewaters dramatically alter the silicon dynamics of the WTAO, forming extensive diatom-dominated phytoplankton blooms that may contribute significantly to the global Si budget as well as contributing to energy and matter flow off of the continental shelf.  相似文献   

19.
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~300 m depth varied between 13 and 32 g m?2 a?1 during 2000 and 2005. Of this total flux 6–13% was due to CaCO3, 4–21% to refractory particulate organic carbon (POC), and 3–8% to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5–8.8 g m?2 a?1), although this varied from 27% to 67% of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May–September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60×106 m?2 d?1. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.  相似文献   

20.
Current estimates point to a mismatch of particulate organic carbon supply derived from the surface ocean and the microbial organic carbon demand in the meso- and bathypelagic realm. Based on recent findings that chemoautotrophic Crenarchaeota are abundant in the mesopelagic zone, we quantified dissolved inorganic carbon (DIC) fixation in the meso- and bathypelagic North Atlantic and compared it with heterotrophic microbial activity. Measuring 14C-bicarbonate fixation and 3H-leucine incorporation revealed that microbial DIC fixation is substantial in the mesopelagic water masses, ranging from 0.1 to 56.7 μmol C m−3 d−1, and is within the same order of magnitude as heterotrophic microbial activity. Integrated over the dark ocean’s water column, DIC fixation ranged from 1–2.5 mmol C m−2 d−1, indicating that chemoautotrophy in the dark ocean represents a significant source of autochthonously produced ‘new organic carbon’ in the ocean’s interior amounting to about 15–53% of the phytoplankton export production. Hence, chemoautotrophic DIC fixation in the oxygenated meso- and bathypelagic water column of the North Atlantic might substantially contribute to the organic carbon demand of the deep-water microbial food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号