首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here the latest BV, VR, and RI color measurements obtained with the CFH12K mosaic camera of the 3.6-m Canada-France-Hawaii Telescope (CFHT). This work is the latest extension of the Meudon Multicolor Survey (2MS) and extends the total number of Centaurs and trans-neptunian objects (TNOs) in the dataset to 71. With this large and homogeneous dataset, we performed relevant statistical analyses to search for correlations with physical and orbital parameters and interrelations with related populations (cometary nuclei and irregular satellites). With a larger dataset, we confirm the correlations found for the Classical TNOs in our previous survey: some colors are significantly correlated with perihelion distance and inclination. The only exception is with the eccentricity. However, results strongly depend on which objects are considered Classicals, and with a dynamically more restricted definition these correlations are no longer present. We also find that strongly significant trends with orbital parameters are not detected for Centaurs, Plutinos or scattered disk objects (SDOs). We also make for the first time reliable statistical comparison between TNOs and related populations (e.g., Centaurs, irregular satellites, short period comets—i.e., SPCs). We find that (1) the colors of SPCs do not match either their TNO or Centaur precursors, and this suggests that some process modifies the surface of SPCs at entry into the inner Solar System. The only exception concerns colors of SDOs from which we could statistically assess that SPCs and SDOs could be drawn from a same single parent distribution. (2) Not surprisingly, Centaurs are compatible with each of the Edgeworth-Kuiper belt dynamical groups at a highly significant level except with the SDOs. (3) Centaurs' colors still present a strong dichotomy between a neutral/slightly red group (e.g., Chiron) and a very red group (e.g., Pholus). (4) The irregular satellite population is not compatible with any of the Centaur, Plutino or Classical populations; however, the similarity of their color properties with SDOs suggests that both groups can be extracted from the same parent distribution. However, due to the small number of Centaurs and SDOs these conclusions cannot be taken as definitive.  相似文献   

2.
We report 43 new visible colors of Centaurs and TNOs, obtained at NTT and VLT telescopes under the “ESO large program on physical properties of Centaurs and TNOs.” Merging these new measurements with those obtained during the first part of the program (Boehnhardt et al., 2002, Astron. Astrophys. 395, 297-303) and the “Meudon Multicolor Survey” (Doressoundiram et al., 2002, Astron. J. 124, 2279-2296) we have a unique dataset of 109 objects. We checked for correlations and trends between colors, physical and orbital parameters, carrying out an analysis based on Monte Carlo simulation to account for observational error bars. Centaurs show no evidence for correlation between VR vs. RI colors which raises the hypothesis that more than one single coloring process might be acting on their surfaces. Classical objects seem to be composed of two different color populations: objects with i<4.5° display only red colors while those with i>4.5° display the whole range of colors from blue to very red. The possibility that the low inclined population is misguiding global conclusions is analyzed. Classical objects also show a stronger color-perihelion correlation for intrinsically brighter objects, corresponding to critical estimated sizes of different formation/evolutionary histories. Scattered disk objects show color resemblances with the classical objects at i>12°, hence surface reflectivities resemblances, pointing to a common origin. No color-aphelion trend is found for SDOs, as expected from the intense irradiation by galactic cosmic-rays beyond the solar wind termination shock. Plutinos show a color-absolute magnitude trend, in which all the intrinsically faintest objects are blue. We see many red Plutinos in highly inclined and highly eccentric orbits, that should have originated in a primordial inner disk under Gomes (2003, Icarus 161, 404-418) migration scenario. This seems to invalidate the assumption that objects originated in this inner disk are mainly blue. Finally, we also find six candidates for light-curve studies: four objects (1998 WU31, 1999 OE4, 1999 OX3, and 2001 KP77) present significant short term R-magnitude variability, and two objects (1999 XX143 and 2000 GP183) evidence possible color variations with rotation.  相似文献   

3.
P. Lamy  I. Toth 《Icarus》2009,201(2):674-713
We present new color results of cometary nuclei obtained with the Hubble Space Telescope (HST) whose superior resolution enables us to accurately isolate the nucleus signals from the surrounding comae. By combining with scrutinized available data obtained with ground-based telescopes, we accumulated a sample of 51 cometary nuclei, 44 ecliptic comets (ECs) and 7 nearly-isotropic comets (NICs) using the nomenclature of Levison [Levison, H.F., 1996. In: Rettig, T.W., Hahn, J.M. (Eds.), Completing the Inventory of the Solar System. In: ASP Conf. Ser., vol. 107, pp. 173-192]. We analyze color distributions and color-color correlations as well as correlations with other physical parameters. We present our compilation of colors of 232 outer Solar System objects—separately considering the different dynamical populations, classical KBOs in low and high-inclination orbits (respectively CKBO-LI and CKBO-HI), resonant KBOs (practically Plutinos), scattered-disk objects (SDOs) and Centaurs—of 12 candidate dead comets, and of 85 Trojans. We perform a systematic analysis of all color distributions, and conclude by synthesizing the implications of the dynamical evolution and of the colors for the origin of the minor bodies of the Solar System. We find that the color distributions are remarkably consistent with the scenarios of the formation of TNOs by Gomes [Gomes, R.S., 2003. Icarus 161, 404-418] generalized by the “Nice” model [Levison, H.F., Morbidelli, A., VanLaerhoven, Ch., Gomes, R., Tsiganis, L., 2008. Icarus 196, 258-273], and of the Trojans by Morbidelli et al. [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. The color distributions of the Centaurs are globally similar to those of the CKBO-HI, the Plutinos and the SDOs. However the potential bimodality of their distributions allows to possibly distinguish two groups based on their (BR) index: Centaur I with (BR)>1.7 and Centaurs II with (BR)<1.4. Centaurs I could be composed of TNOs (prominently CKBO-LI) and ultra red objects from a yet unstudied family. Centaurs II could consist in a population of evolved objects which have already visited the inner Solar System, and which has been scattered back beyond Jupiter. The diversity of colors of the ECs, in particular the existence of very red objects, is consistent with an origin in the Kuiper belt. Candidate dead comets represent an ultimate state of evolution as they appear more evolved than the Trojans and Centaurs II.  相似文献   

4.
New methods are applied to samples of classical cepheids in the galaxy, the Large Magellanic Cloud, and the Small Magellanic Cloud to determine the interstellar extinction law for the classical cepheids, R B:R V:R I:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excesses for classical cepheids in the galaxy, E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classical cepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). The dependence of the intrinsic color (B-V)0 on the metallicity of classical cepheids is discussed. The intrinsic color (V-I)0 is found to be absolutely independent of the metallicity of classical cepheids. A high precision formula is obtained for calculating the intrinsic colors of classical cepheids in the galaxy: (<B>-<V>)0=0.365(±0.011)+0.328(±0.012)logP.  相似文献   

5.
Stephens  D. C.  Noll  K. S.  Grundy  W. M.  Millis  R. L.  Spencer  J. R.  Buie  M. W.  Tegler  S. C.  Romanishin  W.  Cruikshank  D. P. 《Earth, Moon, and Planets》2003,92(1-4):251-260
From July 2001 to June 2002, an HST snapshot program obtained V, R and I photometry for 72 TNOs. The TNOs were sorted by dynamical class, and Spearman rank correlation statistics were calculated for each combination of color and orbital parameter. No strong correlations were found for the combined sample of TNOs, the resonant TNOs, or the non-resonant TNOs (classical). The results presented here suggest that if correlations reported by other authors are real, they are evident only at shorter wavelengths than observed in our survey.  相似文献   

6.
Brenae L. Bailey 《Icarus》2009,203(1):155-1401
The Centaurs are a transient population of small bodies in the outer Solar System whose orbits are strongly chaotic. These objects typically suffer significant changes of orbital parameters on timescales of a few thousand years, and their orbital evolution exhibits two types of behaviors described qualitatively as random walk and resonance-sticking. We have analyzed the chaotic behavior of the known Centaurs. Our analysis has revealed that the two types of chaotic evolution are quantitatively distinguishable: (1) the random walk type behavior is well described by so-called generalized diffusion in which the rms deviation of the semimajor axis grows with time t as ∼tH, with Hurst exponent H in the range 0.22-0.95, however (2) orbital evolution dominated by intermittent resonance sticking, with sudden jumps from one mean motion resonance to another, has poorly defined H. We further find that these two types of behavior are correlated with Centaur dynamical lifetime: most Centaurs whose dynamical lifetime is less than 22 Myr exhibit generalized diffusion, whereas most Centaurs of longer dynamical lifetimes exhibit intermittent resonance sticking. We also find that Centaurs in the diffusing class are likely to evolve into Jupiter-family comets during their dynamical lifetimes, while those in the resonance-hopping class do not.  相似文献   

7.
Two-year BVRI polarimetric monitoring of the exoplanet system 51 Peg has been carried out, indicating that there is no orbital phase-dependent periodic variability in linear polarization with amplitudes greater than 0.04% in the R and I bands. The mean value of one of the Stokes parameters is statistically significant and nonzero, being equal to 0.017 ± 0.004% when averaged over all the bands B, V, R, and I. The nonzero mean polarization can be due to light scattering by a circumstellar torus formed as a result of the mass loss by the hot Jupiter 51 Peg b.  相似文献   

8.
《Icarus》2003,166(1):195-211
We present optical observations of 24 Centaurs performed between 1998 and 2002 with the University of Hawaii 2.2-m telescope. This is the largest such Centaur survey to date. We report colors for all objects, and show that they cover a continuum with mean V–R color of 0.58±0.01 and standard deviation 0.15. The color distribution fits between those of the Kuiper Belt and the cometary nuclei, and seems consistent with the dynamical concept of the majority of Centaurs originating from the Kuiper Belt. We find no strong correlation between a Centaur's color and its orbital elements; there is at best a <3−σ correlation with semimajor axis, with redder Centaurs being farther from the Sun. We have calculated the phase-darkening slope parameters G for 5 Centaurs, 4 of which are reported for the first time. They range from −0.18 to 0.13. We have sufficient data to constrain the rotation periods of two Centaurs, 1999 UG5 (which we reported earlier) and 1998 SG35. We performed a comparison of the surface brightness profiles of 10 apparently-inactive Centaurs with point sources. We found no coma around these 10 objects, including C/LINEAR (2000 B4), and generally the upper limits to the dust mass loss rates are below 0.05 kg s−1.  相似文献   

9.
We present optical photometry of the Centaur 5145 Pholus during 2003 May and 2004 April using the facility CCD camera on the 1.8-m Vatican Advanced Technology Telescope on Mt. Graham, Arizona. We derive a double-peaked lightcurve and a rotation period of 9.980±0.002 h for Pholus, consistent with periods of 9.9825±0.004 and 9.9823±0.0012 h by Buie and Bus (1992, Icarus 100, 288-294) and Farnham (2001, Icarus 152, 238-245). We find a lightcurve peak-to-peak amplitude of 0.60 mag, significantly larger than peak-to-peak amplitude determinations of 0.15 and 0.39 mag by Buie and Bus and Farnham. We use the three observed amplitudes and an amplitude-aspect model to derive four possible rotational pole positions as well as axial ratios of a/b=1.9 and c/b=0.9. If we assume an albedo of 0.04, we find Pholus has dimensions of 310×160×150 km. If we assume Pholus is a strengthless rubble-pile and its non-spherical shape is due to rotational distortion, our axial ratios and period measurements indicate Pholus has a density of 0.5 g cm−3, suggestive of an ice-rich, porous interior. By combining B-band and R-band lightcurves, we find BR=1.94±0.01 and any BR color variation over the surface of Pholus must be smaller than 0.06 mag (i.e., much smaller than the 1.0<BR<2.0 range seen among the Centaur and Kuiper belt object populations). By combining our VR measurements with values in the literature, we find no evidence for any color variegation between the northern and southern hemispheres of Pholus. Observations of the Kuiper belt object 2004 DW (90482) over a time interval of seven hours show no color variation Our observations add to the growing body of evidence that individual Centaurs and KBOs exhibit homogeneous surface colors and hence gray impact craters on radiation reddened crusts are probably not responsible for the surprising range of colors seen among the Centaur and Kuiper belt object populations.  相似文献   

10.
Observations of the rapid photometric variability of SS 433 in the BVR bands, obtained on Mt. Maidanak during 12 nights in 1989-90, are presented. The behavior of the U - B, B - V, and V - R color indices is analyzed on the basis of multicolor photoelectric observations. It is found that, both for rapid variability during a night and for variability on the scale of the orbital period, color-brightness relations exist for U-(U - B) and B-(B - V), analogous to the well-known V-(V - R) relation, with a characteristic property: the color indices decrease with increasing brightness. It is shown that the object's reddening upon a brightness decrease is not due only to eclipses. The behavior of the color characteristics can be explained by the interaction of the relativistic jets with the atmosphere around the accretion disk.  相似文献   

11.
Solutions of the new standard V‐light curves for the EA type binary UV Leo are obtained using the PHOEBE code (0.31a version). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the absolute magnitude‐color (l.e. MV vs. BV) isochrones diagram, based on which the age of the system is estimated to be >4×109 yr. Also times of minima data (“OC curve”) have been analyzed. Apart from an almost sinusoidal variation with a period of 29.63 yr, which modulates the orbital period, and was attributed to a third body orbiting around the system, other cyclic variation in the orbital period and also brightness, with time scales of 24.25 and 22.77 yr were found, respectively. We associate this with a magnetic activity cycle newly reported here for UV Leo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We derive a conservative coincidence time window for joint searches of gravitational-wave (GW) transients and high-energy neutrinos (HENs, with energies ?100 GeV), emitted by gamma-ray bursts (GRBs). The last are among the most interesting astrophysical sources for coincident detections with current and near-future detectors. We take into account a broad range of emission mechanisms. We take the upper limit of GRB durations as the 95% quantile of the T90’s of GRBs observed by BATSE, obtaining a GRB duration upper limit of ∼150 s. Using published results on high-energy (>100 MeV) photon light curves for 8 GRBs detected by Fermi LAT, we verify that most high-energy photons are expected to be observed within the first ∼150 s of the GRB. Taking into account the breakout-time of the relativistic jet produced by the central engine, we allow GW and HEN emission to begin up to 100 s before the onset of observable gamma photon production. Using published precursor time differences, we calculate a time upper bound for precursor activity, obtaining that 95% of precursors occur within ∼250 s prior to the onset of the GRB. Taking the above different processes into account, we arrive at a time window of tHEN − tGW ∈ [−500 s, +500 s]. Considering the above processes, an upper bound can also be determined for the expected time window of GW and/or HEN signals coincident with a detected GRB, tGW − tGRB ≈ tHEN − tGRB ∈ [−350 s, +150 s]. These upper bounds can be used to limit the coincidence time window in multimessenger searches, as well as aiding the interpretation of the times of arrival of measured signals.  相似文献   

13.
The method of time delay correlation function (TDCF) is a new method for calculating the sequential time delays. This method is utilized to calculate the time delays in 3 radio wave bands (4.8 GHz, 8 GHz and 14.5 GHz) of the blazar 0316 + 413 (NGC 1275) and to make the multi-band correlation analysis for other 7 blazar sources. The calculated result of the blazar 0316 + 413 shows that its light curve at 4.8 GHz lags by 410 d behind that at 8 GHz, or τ4.8−8 = 410 d; the light curve at 4.8 GHz lags by 440 d behind that at 14.5 GHz, or τ4.8−14.5 = 440 d; and the light curve at 8 GHz lags by 30 d behind that at 14.5 GHz, or τ8−14.5 = 30 d. In comparison with the method of discrete correlation function (DCF), the time delay obtained by taking advantage of the TDCF method is much more rational for the multi-band correlation analysis of the 7 blazars.  相似文献   

14.
We present the results of the high-resolution spectroscopic observations of the neglected binary system HD 194495 (B3 IV-V+B4 V). A combined analysis of three different photometric data set (Tycho BT and VT photometry, Hp-band data of Hipparcos and V-band data of ASAS3 photometry) and radial velocities indicates that the system has an orbital period of 4.90494 ± 0.00005 days and an inclination of 69 ± 1 degrees. This solution yields masses and radii of M1 = 7.57 ± 0.08 M and R1 = 5.82 ± 0.03 R for the primary and M2 = 5.46 ± 0.09 M and R2 = 3.14 ± 0.08 R for the secondary. Based on the position of the two stars plotted on a theoretical H-R diagram, we find that the age of the system is ?28 Myr, according to stellar evolutionary models. The spectroscopic and photometric results are in agreement with those obtained using theoretical predictions.  相似文献   

15.
We have observed well-sampled phase curves for nine Trojan asteroids in B-, V-, and I-bands. These were constructed from 778 magnitudes taken with the 1.3-m telescope on Cerro Tololo as operated by a service observer for the SMARTS consortium. Over our typical phase range of 0.2-10°, we find our phase curves to be adequately described by a linear model, for slopes of 0.04-0.09 mag/° with average uncertainty less than 0.02 mag/°. (The one exception, 51378 (2001 AT33), has a formally negative slope of −0.02 ± 0.01 mag/°.) These slopes are too steep for the opposition surge mechanism to be shadow-hiding (SH), so we conclude that the dominant surge mechanism must be coherent backscattering (CB). In a detailed comparison of surface properties (including surge slope, B-R color, and albedo), we find that the Trojans have surface properties similar to the P and C class asteroids prominent in the outer main belt, yet they have significantly different surge properties (at a confidence level of 99.90%). This provides an imperfect argument against the traditional idea that the Trojans were formed around Jupiter’s orbit. We also find no overlap in Trojan properties with either the main belt asteroids or with the small icy bodies in the outer Solar System. Importantly, we find that the Trojans are indistinguishable from other small bodies in the outer Solar System that have lost their surface ices (such as the gray Centaurs, gray Scattered Disk Objects, and dead comets). Thus, we find strong support for the idea that the Trojans originally formed as icy bodies in the outer Solar System, were captured into their current orbits during the migration of the gas giant planets, and subsequently lost all their surface ices.  相似文献   

16.
R and I band CCD observations of the nova V1494 Aql during July-November 2002 are reported and the V, R, and I light curves are analyzed. The orbital light curve of this nova has an eclipse-like form with two unequal humps before and after the eclipse. The approach to the eclipse lasts twice as long as the emergence from it. The overall duration of the eclipse is about 0.45P orb. The depth of eclipse increases with wavelength and averages 0m.3 (V), 0m.5 (R), and 0m.7 (I). The secondary, shallow minimum has an average depth of 0m.1 in R and I and about 0m.03 in V. The hump at phase 0.65 is higher than the one at phase 0.17. The most probable explanation for the observed variations in the light with the phase of the orbital period may be self eclipsing of the accretion column in the magnetic exploding variable (white dwarf) together with partial eclipsing of the accretion region by the secondary component.  相似文献   

17.
In this paper, we present standard Johnson UBV photometry of the eclipsing binary BD+36 3317 which is known as a member of Delta Lyrae (Stephenson 1) cluster. We determined colors and brightness of the system, calculated E(B − V) color excess. We discovered that the system shows total eclipse in secondary minimum. Using this advantage, we found that the primary component of the system has B9 − A0 spectral type. Although there is no published orbital solution, we tried to estimate the physical properties of the system from simultaneous analysis of UBV light curves with 2003 version of Wilson-Devinney code. Then we considered photometric solution results together with evolutionary models and estimated the masses of the components as M1 = 2.5 M and M2 = 1.6 M. Those estimations gave the distance of the system as 353 pc. Considering the uncertainties in distance estimation, resulting distance is in agreement with the distance of Delta Lyrae cluster.  相似文献   

18.
We present the first infrared light curves of the binary V1430 Aql, in the bands J and K, plus V, R and I light curves and spectra covering the ranges of Hβ, Hα and Ca II-IRT lines. Our VRIJK data, together with published radial velocity curves, are analyzed to determine the orbital and stellar parameters of the system. Both stellar components present spectroscopic evidence of chromospheric activity, with emission excesses in the Hβ, Hα and Ca II-IRT lines. The measured ratio of the lines Hβ/Hα emission excesses can be interpreted as originated in plages. Our light curves also show photometric evidence of cool spots at least on one of the stars.  相似文献   

19.
The outer Solar System object (29981) 1999 TD10 was observed simultaneously in the R, and J and H bands in September 2001, and in B, V, R, and I in October 2002. We derive BV=0.80±0.05 mag, VR=0.48±0.05 mag, RI=0.44±0.05 mag, RJ=1.24±0.05 mag, and JH=0.61±0.07 mag. Combining our data with the data from Rousselot et al. (2003, Astron. Astrophys. 407, 1139) we derive a synodic period of 15.382±0.001 hr in agreement with the period from Rousselot et al. Our observations at the same time, with better S/N and seeing, show no evidence of a coma, contrary to the claim by Choi et al. (2003, Icarus 165, 101).  相似文献   

20.
Broadband colours are often used as metallicity proxies in the study of extragalactic globular clusters. A common concern is the effect of variations in horizontal branch (HB) morphology – the second‐parameter effect – on such colours. We have used UBVI, Washington, and DDO photometry for a compilation of over 80 Milky Way globular clusters to address this question. Our method is to fit linear relations between colour and [Fe/H], and study the correlations between the residuals about these fits and two quantitative measures of HB morphology. While there is a significant HB effect seen in UB, for the commonly used colours BV, VI, and CT1, the deviations from the baseline colour‐[Fe/H] relations are less strongly related to HB morphology. There may be weak signatures in BV and CT1, but these are at the limit of observational uncertainties. The results may favour the use of BI in studies of extragalactic globular clusters, especially when its high [Fe/H]‐sensitivity is considered. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号