首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

2.
The behaviour of pulsars at low radio-frequencies (below ≈ 50 MHz) remains poorly understood mainly due to very limited observational data on pulsars at these frequencies. We report here our measurements of pulse profiles at 34.5 MHz of 8 pulsars using the Gauribidanur Radio Telescope. None of the 8 pulsars show any significant interpulse emission at this frequency which conflicts with an earlier claim from 25 MHz observations. With the exception of one pulsar (PSR 0943 + 10) all the observed pulsars show turnovers at frequencies above 35 MHz in their spectra. We also report our attempts to study the short and long term variations in the pulsar signals at this low frequency.  相似文献   

3.
We show that the proportionately spaced emission bands in the dynamic spectrum of the Crab pulsar fit the oscillations of the square of a Bessel function whose argument exceeds its order. This function has already been encountered in the analysis of the emission from a polarization current with a superluminal distribution pattern: a current whose distribution pattern rotates (with an angular frequency ω) and oscillates (with a frequency  Ω > ω  differing from an integral multiple of ω) at the same time. Using the results of our earlier analysis, we find that the dependence on frequency of the spacing and width of the observed emission bands can be quantitatively accounted for by an appropriate choice of the value of the single free parameter  Ω/ω  . In addition, the value of this parameter, thus implied by Hankins & Eilek's data, places the last peak in the amplitude of the oscillating Bessel function in question at a frequency  (∼Ω32)  that agrees with the position of the observed ultraviolet peak in the spectrum of the Crab pulsar. We also show how the suppression of the emission bands by the interference of the contributions from differing polarizations can account for the differences in the time and frequency signatures of the interpulse and the main pulse in the Crab pulsar. Finally, we put the emission bands in the context of the observed continuum spectrum of the Crab pulsar by fitting this broad-band spectrum (over 16 orders of magnitude of frequency) with that generated by an electric current with a superluminally rotating distribution pattern.  相似文献   

4.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

5.
The analysis of observations of pulsar B1931+24 shows that the mechanism of the spin-down of a rotating magnetized neutron star is due to the plasma generation in its magnetosphere and, consequently, the radio emission generation. The unique observation of the switch on and switch off of this pulsar allows us to distinguish between the energy loss in the absence of radio emission (the magnetodipole radiation) and the current loss due to the rotation energy expenditure to the relativistic plasma generation and acceleration in the pulsar magnetosphere. The inclination angle χ, the angle between the rotation axis and the magnetic dipole axis, can be stationary for this pulsar,  χ=χst  . From observations and theory it follows that  χst= 59°  .  相似文献   

6.
Seven giant radio pulses were recorded from the millisecond pulsar PSR B1937+21 during ≈8.1 min observation by the Ooty Radio Telescope (ORT) at 326.5 MHz. Although sparse, these observations support most of the giant pulse behaviour reported at higher radio frequencies (430 to 2380 MHz). Within the main component of the integrated profile, they are emitted only in a narrow (≲47 μs) window of pulse phase, close to its peak. This has important implications for doing super-high precision timing of PSR B1937+21 at low radio frequencies.  相似文献   

7.
We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere.  相似文献   

8.
We present the results of our simultaneous observations of giant pulses from the Crab pulsar B0531+21 at frequencies of 594 and 2228 MHz with a high (62.5 ns) time resolution. The pulse broadening by scattering was found to be 25 and 0.4 µs at 594 and 2228 MHz, respectively. We obtained the original giant-pulse profiles compensated for interstellar scattering. The measured profile widths at the two frequencies are approximately equal, ≈0.5 µs; i.e., the giant pulses are narrower than the integrated profile by a factor of about 1000. We detected an extremely high brightness temperature of radio emission, Tb≥1036 K radio emission, which is higher than the previous estimates of this parameter by five orders of magnitude. The decorrelation bandwidth of the radio-spectrum diffraction distortions has been determined for this pulsar for the first time: 10 kHz at 594 MHz and 300 kHz at 2228 MHz.  相似文献   

9.
This paper reports new observations of pulsar B0943+10 carried out at the Pushchino Radio Astronomy Observatory (PRAO) at the low radio frequencies of 42, 62 and 112 MHz. B0943+10 is well known for its exquisitely regular burst-mode (B-mode) drifting subpulses as well as its weaker and chaotic quiescent mode. Earlier Arecibo investigations at 327 MHz have identified remarkable, continuous changes in its B-mode subpulse drift rate and integrated-profile shape with durations of several hours. These PRAO observations reveal that the changes in profile shape during the B-mode lifetime are strongly frequency dependent – namely the measured changes in the component amplitude ratio are more dramatic at 327 and 112 MHz as compared with those at 62 and 42 MHz. The differences, however, are most marked during the first several tens of minutes after B-mode onset; after an hour or so the profile shape changes tend to be more similar at all four frequencies. We also have found that the linear polarization of the integrated profile increases continuously throughout the lifetime of the B mode, going from hardly 10 per cent just after onset to some 40–50 per cent after several hours. Pulsar B0943+10's B mode thus provides a unique new opportunity to investigate continuous systematic changes in the plasma flow within the polar flux tube. While refraction in the pulsar's magnetosphere may well play some role, we find that the various frequency-dependent effects, both between and within the two modes, can largely be understood geometrically. If the modes and B-mode decay reflect systematic variations in the carousel-'spark' radius and emission height then a specific set of profile and linear polarization changes would be expected.  相似文献   

10.
Low-mass white dwarfs can be produced either in low-mass X-ray binaries by stable mass transfer to a neutron star, or in a common envelope phase with a heavier white dwarf companion. We have searched eight low-mass white dwarf candidates recently identified in the Sloan Digital Sky Survey for radio pulsations from pulsar companions, using the Green Bank Telescope at 340 MHz. We have found no pulsations down to flux densities of 0.6–0.8 mJy kpc−2 and conclude that a given low-mass helium-core white dwarf has a probability of  <0.18 ± 0.05  of being in a binary with a radio pulsar.  相似文献   

11.
New images of the supernova remnant (SNR) G351.7+0.8 are presented based on 21-cm H  i -line emission and continuum emission data from the Southern Galactic Plane Survey. SNR G351.7+0.8 has a flux density of 8.4 ± 0.7 Jy at 1420 MHz. Its spectral index is 0.52 ± 0.25 ( S = v −α) between 1420 and 843 MHz, typical of adiabatically expanding shell-like remnants. H  i observations show structures possibly associated with the SNR in the radial velocity range of −10 to −18 km s−1, and suggest a distance of 13.2 kpc and a radius of 30.7 pc. The estimated Sedov age for G351.7+0.8 is less than  6.8×104 yr  . A young radio pulsar PSR J1721−3532 lies close to SNR G351.7+0.8 on the sky. The new distance and age of G351.7+0.8 and recent proper motion measurements of the pulsar strongly argue against an association between SNR G351.7+0.8 and PSR J1721−3532. There is an unidentified, faint X-ray point source 1RXS J172055.3−353937 which is close to G351.7+0.8. This may be a neutron star potentially associated with G351.7+0.8.  相似文献   

12.
We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of  30 000 ± 1100  potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc2. Adopting the Tauris & Manchester beaming model, this translates to a total of  155 000 ± 6000  active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be  1.4 ± 0.2  pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.  相似文献   

13.
The correlation of subpulse phases across nulls is investigated in the radio pulsar PSR B0031−07, using 29 849 periods of high-quality data obtained with the Ooty Radio Telescope (ORT) which operates at 327 MHz. Assuming that the turn-off and turn-on subpulse phases (the phase of the subpulse in the last period before the null and that in the first period after the null, respectively) are independent random variables, the expected distribution of their difference (i.e. the total drift) is inconsistent with the observed distribution for null transitions within the same drift mode; this implies a correlation of subpulse phase across nulls. However, this correlation decreases with null duration for both the dominant drift modes. Substantial drifting occurs during short nulls (one to four periods); the drift rate during the short nulls appears to be constant for a class A transition, whereas it decreases with null duration for class B transitions. These results, together with the reported behaviour of PSR B1944+17 and PSR B0809+74, seem to imply different time-scales for phase correlation in different pulsars.  相似文献   

14.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

15.
Stairs, Lyne & Shemar have found that the arrival-time residuals from PSR B1828−11 vary periodically with a period ≈500 d. This behaviour can be accounted for by precession of the radio pulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same time-scale. Here, we model the period residuals from PSR B1828−11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points towards the observer varies with precession phase; and (ii) the spin-down contribution, which arises from any dependence of the spin-down torque acting on the pulsar on the angle between its spin     and magnetic     axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spin-down torque on     , for which we assume the sum of a spin-aligned component (with a weight  1 − a   ) and a dipolar component perpendicular to the magnetic beam axis (weight a ), rather than the vacuum dipole torque  ( a = 1)  . We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star, we find evidence for an angle-dependent spin-down torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of the timing behaviour of PSR B1828−11, without fine tuning of the parameters.  相似文献   

16.
We show that the relativistic wind of the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at r r S∼0.1 pc, in fact could be directly observed through its inverse Compton (IC) γ -ray emission. This radiation is caused by illumination of the wind by low-frequency photons emitted by the pulsar, and consists of two, pulsed and unpulsed , components associated with the non-thermal (pulsed) and thermal (unpulsed) low-energy radiation of the pulsar, respectively. These two components of γ -radiation have distinct spectral characteristics, which depend essentially on the site of formation of the kinetic-energy-dominated wind, as well as on the Lorentz factor and the geometry of propagation of the wind. Thus, the search for such specific radiation components in the spectrum of the Crab Nebula can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths. In particular, we show that the comparison of the calculated flux of the unpulsed IC emission with the measured γ -ray flux of the Crab Nebula excludes the possibility of formation of a kinetic-energy-dominated wind within 5 light-cylinder radii of the pulsar, R w5 R L. The analysis of the pulsed IC emission, calculated under reasonable assumptions concerning the production site and angular distribution of the optical pulsed radiation, yields even tighter restrictions, namely R w30 R L.  相似文献   

17.
PSR J1806−2125 is a pulsar discovered in the Parkes multibeam pulsar survey with a rotational period of 0.4 s and a characteristic age of 65 kyr. Between MJDs 51462 and 51894 this pulsar underwent an increase in rotational frequency of  Δ ν / ν ≈16×10-6  . The magnitude of this glitch is ∼2.5 times greater than any previously observed in any pulsar and 16 times greater than the mean glitch size. This Letter gives the parameters of the glitch and compares its properties with those of previously observed events. The existence of such large and rare glitches offers new hope for attempts to observe thermal X-ray emission from the internal heat released following a glitch, and suggests that pulsars which previously have not been observed to glitch may do so on long time-scales .  相似文献   

18.
Polarization observations of 66 southern pulsars   总被引:1,自引:0,他引:1  
Mean pulse profiles and polarization parameters at 435, 660 or 1500 MHz obtained using the ATNF Parkes radio telescope are presented for 66 southern pulsars. About half of these pulsars were discovered in the Parkes southern pulsar survey and most have no previously published polarization parameters. Where possible, beam impact parameters and inclination angles are computed assuming a circular beam geometry and the rotating-vector model. Implications of the results for models of the pulse emission mechanism are briefly discussed.  相似文献   

19.
The dynamic spectrum of a radio pulsar is an in-line digital hologram of the ionized interstellar medium. It has previously been demonstrated that such holograms permit image reconstruction, in the sense that one can determine an approximation to the complex electric field values as a function of Doppler shift and delay, but to date the quality of the reconstructions has been poor. Here we report a substantial improvement in the method which we have achieved by simultaneous optimization of the thousands of coefficients that describe the electric field. For our test spectrum of PSR B0834+06 we find that the model provides an accurate representation of the data over the full 63 dB dynamic range of the observations: residual differences between model and data are noise like. The advent of interstellar holography enables detailed quantitative investigation of the interstellar radio-wave propagation paths for a given pulsar at each epoch of observation. We illustrate this using our test data which show the scattering material to be structured and highly anisotropic. The temporal response of the medium exhibits a scattering tail which extends to beyond  100 μs  , and the centroid of the pulse at this frequency and this epoch of observation is delayed by approximately  15 μs  as a result of multipath propagation in the interstellar medium.  相似文献   

20.
A baseband recorder for radio pulsar observations   总被引:1,自引:0,他引:1  
Digital signal recorders are becoming widely used in several subfields of centimetre-wavelength radio astronomy. We review the benefits and design considerations of such systems and describe the Princeton Mark IV instrument, an implementation designed for coherent-dedispersion pulsar observations. Features of this instrument include corrections for the distortions caused by coarse quantization of the incoming signal, as well as algorithms that effectively excise both narrow-band and broad-band radio frequency interference. Observations at 430 MHz, using the Mark IV system in parallel with a system using a 250-kHz filter bank and incoherent dedispersion, demonstrated timing precision improvement by a factor of 3 or better for typical millisecond pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号