首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass and energy fluxes between the atmosphere and vegetation are driven by meteorological variables, and controlled by plant water status, which may change more markedly diurnally than soil water. We tested the hypothesis that integration of dynamic changes in leaf water potential may improve the simulation of CO2 and water fluxes over a wheat canopy. Simulation of leaf water potential was integrated into a comprehensive model (the ChinaAgrosys) of heat, water and CO2 fluxes and crop growth. Photosynthesis from individual leaves was integrated to the canopy by taking into consideration the attenuation of radiation when penetrating the canopy. Transpiration was calculated with the Shuttleworth-Wallace model in which canopy resistance was taken as a link between energy balance and physiological regulation. A revised version of the Ball-Woodrow-Berry stomatal model was applied to produce a new canopy resistance model, which was validated against measured CO2 and water vapour fluxes over winter wheat fields in Yucheng (36°57′ N, 116°36′ E, 28 m above sea level) in the North China Plain during 1997, 2001 and 2004. Leaf water potential played an important role in causing stomatal conductance to fall at midday, which caused diurnal changes in photosynthesis and transpiration. Changes in soil water potential were less important. Inclusion of the dynamics of leaf water potential can improve the precision of the simulation of CO2 and water vapour fluxes, especially in the afternoon under water stress conditions.  相似文献   

2.
 Recent improvements to the Hadley Centre climate model include the introduction of a new land surface scheme called “MOSES” (Met Office Surface Exchange Scheme). MOSES is built on the previous scheme, but incorporates in addition an interactive plant photosynthesis and conductance module, and a new soil thermodynamics scheme which simulates the freezing and melting of soil water, and takes account of the dependence of soil thermal characteristics on the frozen and unfrozen components. The impact of these new features is demonstrated by comparing 1×CO2 and 2×CO2 climate simulations carried out using the old (UKMO) and new (MOSES) land surface schemes. MOSES is found to improve the simulation of current climate. Soil water freezing tends to warm the high-latitude land in the northern Hemisphere during autumn and winter, whilst the increased soil water availability in MOSES alleviates a spurious summer drying in the mid-latitudes. The interactive canopy conductance responds directly to CO2, supressing transpiration as the concentration increases and producing a significant enhancement of the warming due to the radiative effects of CO2 alone. Received: 16 March 1998 / Accepted: 4 August 1998  相似文献   

3.
The sensitivity of evaporation to a prescribed vegetation annual cycle is examined globally in the Met Office Hadley Centre Unified Model (HadAM3) which incorporates the Met Office Surface Exchange Scheme (MOSES2) as the land surface scheme. A vegetation annual cycle for each plant functional type in each grid box is derived based on satellite estimates of Leaf Area Index (LAI) obtained from the nine-year International Satellite Land Surface Climatology Project II dataset. The prescribed model vegetation seasonality consists of annual cycles of a number of structural vegetation characteristics including LAI as well as canopy height, surface roughness, canopy water capacity, and canopy heat capacity, which themselves are based on empirical relationships with LAI. An annual cycle of surface albedo, which in the model is a function of soil albedo, surface soil moisture, and LAI, is also modelled and agrees reasonably with observed estimates of the surface albedo annual cycle. Two 25-year numerical experiments are completed and compared: the first with vegetation characteristics held at annual mean values, the second with prescribed realistic seasonally varying vegetation. Initial analysis uncovered an unrealistically weak relationship between evaporation and vegetation state that is primarily due to the insensitivity of evapotranspiration to LAI. This weak relationship is strengthened by the adjustment of two MOSES2 parameters that together improve the models LAI-surface conductance relationship by comparison with observed and theoretical estimates. The extinction coefficient for photosynthetically active radiation, k par , is adjusted downwards from 0.5 to 0.3, thereby enhancing the LAI-canopy conductance relationship. A canopy shading extinction coefficient, k sh , that controls what fraction of the soil surface beneath a canopy is directly exposed to the overlying atmosphere is increased from 0.5 to 1.0, which effectively reduces soil evaporation under a dense canopy. When the experiments are repeated with the adjusted parameters, the relationship between evaporation and vegetation state is strengthened and is more spatially consistent. At nearly all locations, the annual cycle of evaporation is enhanced in the seasonally varying vegetation experiment. Evaporation is stronger during the peak of the growing season and, in the tropics, reduced transpiration during the dry season when LAI is small leads to significantly lower total evaporation.  相似文献   

4.
Summary Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine (Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day–1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day–1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h–1, i.e., 230 W m–2.Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux,r 2 = 0.86. The difference between the two estimates was due to understory transpiration.Canopy conductance (g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations ofg c were well correlated (r 2 = 0.85) with global radiation (R) and vapour pressure deficit (vpd). The quantitative expression forg c =f (R, vpd) was very similar to that previously found with maritime pine (Pinus pinaster) in the forest of Les Landes, South Western France.With 6 Figures  相似文献   

5.
Summary This paper presents a study of the sensibility of the Penman-Monteith evapotranspiration model to climatic (available energy and vapour pressure deficit) and parametric (aerodynamic and canopy resistances, r a and r c respectively) factors in a semi-arid climate, for crops in contrasting water status (well irrigated and under water stress) and of different heights. Three experiments were carried out in southern Italy on reference grass (≈ 0.1 m), grain sorghum (≈ 1 m) and sweet sorghum (≈ 3 m). For this analysis the sensitivity coefficients, taken as hourly means, were evaluated during the growth season when the crops completely covered the soil. The relative errors on evapotranspiration were also evaluated for r a and r c . The results showed that, for reference grass, available energy and aerodynamic resistance play a major role. For crops under water stress the most important term to evaluate is canopy resistance. For a tall crop, as sweet sorghum, the role of the vapour pressure deficit is fundamental, both when the crop is in good water status and under water stress. Received July 14, 1997 Revised February 5, 1998  相似文献   

6.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   

7.
Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model replacing the traditional Jarvis scheme for estimating the canopy resistance and transpiration. Using 18-month simulations from the High Resolution Land Data Assimilation System (HRLDAS), the impact of the photosynthesis-based approach on the simulated canopy resistance, surface heat fluxes, soil moisture, and soil temperature over different vegetation types is evaluated using data from the Atmospheric Radiation Measurement (ARM) site, Oklahoma Mesonet, 2002 International H2O Project (IHOP_2002), and three Ameriflux sites. Incorporation of GEM into Noah improves the surface energy fluxes as well as the associated diurnal cycle of soil moisture and soil temperature during both wet and dry periods. An analysis of midday, average canopy resistance shows similar day-to-day trends in the model fields as seen in observed patterns. Bias and standard deviation analyses for soil temperature and surface fluxes show that GEM responds somewhat better than the Jarvis scheme, mainly because the Jarvis approach relies on a parametrised minimum canopy resistance and meteorological variables such as air temperature and incident radiation. The analyses suggest that adding a photosynthesis-based transpiration scheme such as GEM improves the ability of the land-data assimilation system to simulate evaporation and transpiration under a range of soil and vegetation conditions.  相似文献   

8.
An attempt is made to construct a model, coupling land surface and atmospheric processes in the planetary boundary layer (PBL). A grassland strip in a semi-desert (hereinafter called desert) is presupposed, so as to simulate the case of heterogeneous vegetation cover.Modeling results indicate that every term in the equation of the surface energy balance changes as the air flows over the grassland. The striking contrast of water and energy conditions between the grassland and the desert means that the air over the grassland is cooler and wetter than that over the desert. Consequently, in the heating and dynamic forcing of the air by the underlying surface, heterogeneities arise and are then transferred upward by the turbulent motions. Horizontal differences thus develop in the PBL, resulting in a local circulation. Meanwhile, the horizontal differences affect the free atmosphere through vertical motion at the top of the PBL.List of symbols d 1,d 2,d 3 depths of surface, middle and lower layers of soil - T c ,T 1,T 2,T 3 temperatures of canopy, surface, middle and lower layers of soil - R nc net radiation of canopy layer - c shielding factor of vegetation - Ew, Etc evaporation from wet fraction of foliage and transpiration from dry fraction of foliage - Et 1,Et 2 transpiration of foliage water absorbed by the root in the upper and lower soil, respectively - H c sensible heat of canopy - P c ,D c precipitation rate and drainage of canopy - C s ,C c ,C w heat capacity of soil, canopy and water - w , s density of water and air near the surface - D hydraulic permeability of soil - s saturated value of the ratio of volumetric soil moisture - S g , g solar radiation and surface reflection - H g ,R L g turbulent heat flux and long wave radiation of surface - P g ,E g precipitation rate and evaporation of soil surface - K s soil thermal diffusivity - K (m),K (H),K (q) eddy coefficients of momentum, heat and moisture - u, v, w components of wind speed in three directions - air potential temperature - e turbulent kinetic energy - p atmospheric pressure - C p specific heat of air under constant pressure - R d gas constant - u * friction velocity - * feature temperature - h height of the PBL - f Coriolis parameter - L 0 Monin-Obukhov length - latent heat of vaporization - q specific humidity - M c ,M cm interception water storage of canopy and its maximum - 0 Exner number of largescale background field - perturbation Exner number - u g ,v g components of the geostrophic wind speed Sponsored by the National Natural Science Foundation of China.  相似文献   

9.
Flux measurements of ozone and water vapour employing the eddy correlation technique were used to determine the surface conductance and canopy conductance to ozone. In the surface conductance to ozone, all surfaces at which ozone is destroyed and the transport process to these surfaces are included. The canopy conductance to ozone represents the ozone uptake of transpiring plant parts. The surface conductance to ozone of the maize crop and the underlying soil was generally larger than the canopy conductance to ozone. This means that beside the uptake by stomata, there was another important ozone sink. Under wet soil surface conditions, the surface conductance and the canopy conductance to ozone coincided. This indicates that the resistance of wet soil and the remaining plant parts (cuticle) to ozone was much larger than the stomatal or soil resistance. On the other hand, under dry soil conditions the conductances differ, largely caused by a variation in the transport process to the soil. The transport of ozone to soil increased with increasing friction velocity (u *) and decreased with increasing atmospheric stability, leaf area index (LAI) or crop height (h). These effects for midday (unstable) conditions were parameterized with an in-crop aerodynamic resistance,r inc in a very straightforward way;r inc=13.9 LAIh/u *+67 (cc.=0.77). If the ozone flux in air pollution models is described with a simple resistance model (Big Leaf model), the extra destruction at the soil should be modelled using an in-crop aerodynamic resistance. For these measurements the ozone flux to the soil was 0–65% of the total ozone flux measured above the crop. Under wet soil conditions, this was less than 20%; under dry soil conditions, this was 30–65%.  相似文献   

10.
Summary In this paper a model for estimating actual evapotranspiration is developed and tested for field crops (grain sorghum and sunflower) maintained under water stress conditions. The model is based on the Penman-Monteith formulation of ET in which canopy resistance (r c) is modeled with respect to the crop water status and local climatological conditions. The model was previously tested on reference grass; in this last case no reference was made to soil water conditions andr c was modeled only as a function of climatological parameters. Herer c is expressed as a function of available energy, vapour pressure deficit, aerodynamic resistance and crop water status by means of predawn leaf water potential. Results, obtained with various crop water stress intensities, show that, on a daily scale, calculated ET is 98% and 95% of the measured ET for sorghum and sunflower respectively. The correlation between daily calculated and measured ET is very high (r 2 = 0.95 for sorghum andr 2 = 0.98 for sunflower). On an hourly scale, the model works very well when the crops were not stressed and during the senescence stage. In case of weak and strong stress the model has to be used with some precautions.With 9 Figures  相似文献   

11.
Effects Of Grazing On Soil Respiration Of Leymus Chinensis Steppe   总被引:2,自引:0,他引:2  
Soil respiration, canopy temperature, soil moisture, above and belowground biomass were observed in 2001, 2002, 2004 and 2005 at fenced and grazed typical Leymus chinensis steppes in Inner Mongolia. Based on soil respiration data obtained by the enclosed chamber method, diurnal and seasonal dynamics of soil respiration and their controlling factors were analyzed. The effects of grazing on diurnal and seasonal soil respirations were not significant. The diurnal patterns of soil respiration could be expressed as a one-humped curve and the lowest and highest values appearing from 1:00 to 3:00 and from 11:00 to 14:00, respectively. Canopy temperature had a strong influence on the diurnal variation of soil respiration. The rates of soil respiration rose to a seasonal maximum from the middle of June to the end of July and then gradually decreased. Soil moisture explained about 71.3% and 58.3% of the seasonal variation in soil respiration at fenced and grazed plots, respectively, and canopy temperature only 33.9% and 39.7%. Soil respiration rate, above and belowground biomass and soil moisture were significantly increased at the fenced plots compared to the grazed plots (P < 0.05), but the difference was not significant in canopy temperature. The mean soil respiration rates were 247.85 and 108.31 mgCO2 m−2 h−1 during the whole experiment at fenced and grazed plots, respectively. Soil respiration rate was enhanced significantly at the fenced plots, which might attribute to the increasing soil moisture and biomass. The response of soil respiration rate to grazing varied among different sites and might be related to local soil moisture status.  相似文献   

12.
Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the “Fichtelgebirge” mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116(zhc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.  相似文献   

13.
锡林浩特草原CO2通量特征及其影响因素分析   总被引:1,自引:0,他引:1  
利用锡林浩特国家气候观象台开路涡度相关系统、辐射土壤观测系统,测得的长期连续通量观测数据,对锡林浩特草原2009—2011年期间的CO2通量观测特征进行了分析。结果表明:CO2通量存在明显的年际、季节和日变化特征。3 a中NEE年际变率达到200 g·m-2,季节变率最大达到460 g·m-2,日变化幅度生长季最大达到0.25 mg·m-2·s-1。通过不同时间尺度碳通量与温度、水分、辐射等环境因子的分析,认为CO2通量日变化主要受温度和光合有效辐射影响,而季节变化和年变化主要受降水和土壤含水量的影响。降水强度及时间分布是制约牧草CO2吸收的关键因素,大于15%的土壤含水量有利于促进牧草生长。  相似文献   

14.
An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.  相似文献   

15.
本文基于2007年和2008年生长季内蒙古羊草和大针茅草原湍流观测资料,分析了两种典型草原下垫面生长季的不同土壤水分条件下水汽和二氧化碳通量交换特征及其控制因子。主要结果如下:(1)在植被生长峰值期,日尺度上,干旱条件下土壤湿度是潜热通量的主要控制因子,而土壤水分条件较好时潜热通量主要受净辐射控制。(2)与大针茅草原相比,羊草草原叶面积指数较大,水分条件较好时,其潜热通量平均值更大,CO2吸收能力更强,吸收CO2更多;但在土壤水分胁迫出现时,羊草草原叶面的气孔闭合度急剧增加,大针茅草原的潜热通量、和CO2吸收反而更大,表现出更为耐旱的植被特性。(3)地表导度可以用来解释土壤水分条件对羊草和大针茅草原碳水通量的影响。  相似文献   

16.
A mesoscale meteorological model (FOOT3DK) is coupled with a gas exchange model to simulate surface fluxes of CO2 and H2O under field conditions. The gas exchange model consists of a C3 single leaf photosynthesis sub-model and an extended big leaf (sun/shade) sub-model that divides the canopy into sunlit and shaded fractions. Simulated CO2 fluxes of the stand-alone version of the gas exchange model correspond well to eddy-covariance measurements at a test site in a rural area in the west of Germany. The coupled FOOT3DK/gas exchange model is validated for the diurnal cycle at singular grid points, and delivers realistic fluxes with respect to their order of magnitude and to the general daily course. Compared to the Jarvis-based big leaf scheme, simulations of latent heat fluxes with a photosynthesis-based scheme for stomatal conductance are more realistic. As expected, flux averages are strongly influenced by the underlying land cover. While the simulated net ecosystem exchange is highly correlated with leaf area index, this correlation is much weaker for the latent heat flux. Photosynthetic CO2 uptake is associated with transpirational water loss via the stomata, and the resulting opposing surface fluxes of CO2 and H2O are reproduced with the model approach. Over vegetated surfaces it is shown that the coupling of a photosynthesis-based gas exchange model with the land-surface scheme of a mesoscale model results in more realistic simulated latent heat fluxes.  相似文献   

17.
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in south-eastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.  相似文献   

18.
Components of surface energy balance in a temperate grassland ecosystem   总被引:7,自引:0,他引:7  
Eddy correlation measurements were made of fluxes of moisture, heat and momentum at a tallgrass prairie site near Manhattan, Kansas, U.S.A. during the First ISLSCP Field Experiment (FIFE) in 1987. The study site is dominated by three C4 grass species: big bluestem (Andropogon gerardii), indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum). The stomatal conductance and leaf water potential of these grass species were also measured.In this paper, daily and seasonal variations in the components of the surface energy balance are examined. The aerodynamic and canopy surface conductances for the prairie vegetation are also evaluated.Published as Paper No. 8987, Journal Series, Nebraska Agricultural Research Division.
  相似文献   

19.
20.
Summary We study the response of the land-surface to prescribed atmospheric forcing for 31 May 1978 at Cabauw, Netherlands, using the land-surface scheme from the Coupled Atmospheric boundary layer-Plant-Soil (CAPS) model. Results from model runs show realistic daytime surface fluxes are produced using a canopy conductance formulation derived from Cabauw data (for 1987, a different year), and un-tuned parameterizations of root density (near-uniform with depth) and soil heat flux (reduced thermal conductivity through vegetation). Sensitivity of model-calculated surface heat fluxes to initial values of soil moisture is also examined. Results of this study provide the land-surface base state for a coupled land–atmosphere modeling study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号