首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

2.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   


3.
A. Dini  G. Gianelli  M. Puxeddu  G. Ruggieri   《Lithos》2005,81(1-4):1-31
Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8–2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3–1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14–23 km depth), characterized by distinct εNd(t) and 87Sr/86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3–6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low εNd(t) value (about −10.5) produced the oldest intrusions (about 3.8–2.5 Ma). Afterwards (2.5–2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher εNd(t) value (−7.9). Finally, a muscovite-rich source with high εNd(t) (about −8.9) gave origin to the younger group of granites (2.3–1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to the same intrusion is interpreted, as due to the short residence time of magmas in the source region followed by their rapid transfer to the emplacement level. Partial melting was probably triggered by multiple, small-sized mafic intrusions, distributed over the last 3.8 Ma that allowed temporary overstepping of biotite- and muscovite-dehydration melting reactions into an already pre-heated crust. Dilution in time of the magmatic activity probably prevented melt mingling and homogenization at depth, as well as the formation of a single, homogeneous, hybrid pluton at the emplacement level. Moreover the high concentrations of fluxing elements (B, F, Li) estimated for the LAR granites modified melt properties by reducing solidus temperatures, decreasing viscosity and increasing H2O solubility in granite melts. The consequences were a more efficient, fast, magma extraction and transfer from the source, and a prolonged time of crystallization at the emplacement level. These key factors explain the long-lived hydrothermal activity recorded in this area by both fossil (Plio-Quaternary ore deposits) and active (Larderello geothermal field) systems.  相似文献   

4.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


5.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

6.
NE China is the easternmost part of the Central Asian Orogenic Belt (CAOB). The area is distinguished by widespread occurrence of Phanerozoic granitic rocks. In the companion paper (Part I), we established the Jurassic ages (184–137 Ma) for three granitic plutons: Xinhuatun, Lamashan and Yiershi. We also used geochemical data to argue that these rocks are highly fractionated I-type granites. In this paper, we present Sr–Nd–O isotope data of the three plutons and 32 additional samples to delineate the nature of their source, to determine the proportion of mantle to crustal components in the generation of the voluminous granitoids and to discuss crustal growth in the Phanerozoic.

Despite their difference in emplacement age, Sr–Nd isotopic analyses reveal that these Jurassic granites have common isotopic characteristics. They all have low initial 87Sr/86Sr ratios (0.7045±0.0015), positive Nd(T) values (+1.3 to +2.8), and young Sm–Nd model ages (720–840 Ma). These characteristics are indicative of juvenile nature for these granites. Other Late Paleozoic to Mesozoic granites in this region also show the same features. Sr–Nd and oxygen isotopic data suggest that the magmatic evolution of the granites can be explained in terms of two-stage processes: (1) formation of parental magmas by melting of a relatively juvenile crust, which is probably a mixed lithology formed by pre-existing lower crust intruded or underplated by mantle-derived basaltic magma, and (2) extensive magmatic differentiation of the parental magmas in a slow cooling environment.

The widespread distribution of juvenile granitoids in NE China indicates a massive transfer of mantle material to the crust in a post-orogenic tectonic setting. Several recent studies have documented that juvenile granitoids of Paleozoic to Mesozoic ages are ubiquitous in the Central Asian Orogenic Belt, hence suggesting a significant growth of the continental crust in the Phanerozoic.  相似文献   


7.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

8.
Neogene volcanism in the Eastern Rif (Morocco) comprises a series of calc-alkaline, potassic calc-alkaline, shoshonitic and alkaline volcanic rocks. According to new stratigraphical, along with new and previous chronological and geochemical data, the orogenic volcanism was successively (1) calc-alkaline (basaltic andesites and andesites: 13.1 to 12.5 Ma, rhyolites: 9.8 Ma), (2) K-calc-alkaline (basaltic andesitic to rhyolitic lavas and granodiorites: 9.0 to 6.6 Ma), and (3) shoshonitic (absarokites, shoshonites, latites, trachytes: 7.0 to 5.4 Ma). The later Pliocene volcanism was basaltic and alkaline (5.6 to 1.5 Ma). The calc-alkaline and K-calc-alkaline series exhibit lower K2O (0.7–5.3 wt.%), Nb (8–19 ppm) contents and higher 87Sr/86Sr (0.70773–0.71016) than the shoshonitic series (K2O: 2.4–7.2 wt.%, Nb: 21–38 ppm, 87Sr/86Sr: 0.70404–0.70778). Pliocene alkaline basalts have a sodic tendency (Na2O/K2O: 1.7–3.5), high Nb content (up to 52 ppm), and low 87Sr/86Sr ratio (0.70360–0.70413). The variations through time of K2O, Nb and Sr isotopic ratio reflect different mantle sources: (i) calc-alkaline, potassic calc-alkaline and shoshonitic series are derived from a mantle source modified by older subduction, (ii) alkaline basalts are derived mainly from an enriched mantle source. Through time, incompatible elements such as Nb increased while 87Sr/86Sr decreased, suggesting a decreasing influence of metasomatized mantle (inherited subduction). Such evolution is related to the post-collision regimes operating in this area, and could be linked to the succession of extensional, compressional and strike-slip fault tectonics.  相似文献   

9.
The Sr, Nd and Pb isotopic compositions for the Kovdor phoscorite–carbonatite complex (PCC), Kola Peninsula, NW Russia, have been determined to characterize the mantle sources involved and to evaluate the relative contributions of a plume and subcontinental lithospheric mantle in the formation of the complex. The Kovdor PCC is a part of the Kovdor ultramafic–alkaline–carbonatite massif, and consists of six intrusions. The initial isotopic ratios of the analyzed samples, calculated at 380 Ma, display limited variations: εNd, + 2.0 to + 4.7; 87Sr/86Sr, 0.70319 to 0.70361 (εSr, − 12.2 to − 6.2); 206Pb/204Pb, 18.38 to 18.74; 207Pb/204Pb, 15.45 to 15.50; 208Pb/204Pb, 37.98 to 39.28. The Nd and Sr isotope data of the Kovdor PCC generally fit the patterns of the other phoscorites and carbonatites from the Kola Alkaline Province (KAP), but some data are slightly shifted from the mixing line defined as the Kola Carbonatite Line, having more radiogenic 87Sr/86Sr ratios. However, the less radiogenic Nd isotopic compositions and negative Δ7/4 values of Pb isotopes of the analyzed samples exclude crustal contamination, but imply the involvement of a metasomatized lithospheric mantle source. Isotopic variations indicate mixing of at least three distinct mantle components: FOZO-like primitive plume component, EMI-like enriched component and DMM-like depleted component. The isotopic nature of the EMI- and DMM-like mantle component observed in the Kovdor samples is considered to be inherited from metasomatized subcontinental lithospheric mantle. This supports the previous models invoking plume–lithosphere interaction to explain the origin of the Devonian alkaline carbonatite magmatism in the KAP.  相似文献   

10.
Late Triassic granitoids in the Songpan-Garzê Fold Belt (SGFB), on the eastern margin of the Tibetan Plateau, formed at 230 to 220 Ma and can be divided into two groups. Group 1 are high-K calc-alkaline rocks with adakitic affinities (K-adakites), with Sr > 400 ppm, Y < 11 ppm, strongly fractionated REE patterns ((La/Yb)N = 32–105) and high K2O/Na2O (≈ 1). Group 2 are ordinary high-K calc-alkaline I-types with lower Sr (< 400 ppm), higher Y (> 18 ppm) and weakly fractionated REE patterns ((La/Yb)N < 20). Rocks of both groups have similar negative Eu anomalies (Eu/Eu = 0.50 to 0.94) and initial 87Sr/86Sr (0.70528 to 0.71086), but group 1 rocks have higher εNd(t) (− 1.01 to − 4.84) than group 2 (− 3.11 to − 6.71). Calculated initial Pb isotope ratios for both groups are: 206Pb/204Pb = 18.343 to 18.627, 207Pb/204Pb = 15.610 to 15.705 and 208Pb/204Pb = 38.269 to 3759. Group 1 magmas were derived through partial melting of thickened and then delaminated TTG-type, eclogitic lower crust, with some contribution from juvenile enriched mantle melts. Group 2 magmas were generated by partial melting of shallower lower crustal rocks. The inferred magma sources of both groups suggest that the basement of the SGFB was similar to the exposed Kangding Complex, and that the SGFB was formed in a similar manner to the South China basement. Here, passive margin crust was greatly thickened and then delaminated, all within a very short time interval ( 20 Myr). Such post-collisional crustal thickening could be the tectonic setting for the generation of many adakitic magmas, especially where there is no spatial and temporal association with subduction.  相似文献   

11.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP.

In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample.

This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust.  相似文献   


12.
The Oshurkovo Complex is a plutonic sheeted complex which represents numerous successive magmatic injections into an expanding system of subparallel and subvertical fractures. It comprises a wide range of rock types including alkali monzodiorite, monzonite, plagioclase-bearing and alkali-feldspar syenites, in the proportion of about 70% mafic rocks to 30% syenite. We suggest that the variation within the complex originated mainly by fractional crystallization of a tephrite magma.

The mafic rocks are considered as plutonic equivalents of lamprophyres. They exhibit a high abundance of ternary feldspar and apatite, the latter may attain 7–8 vol.% in monzodiorite. Ternary feldspar is also abundant in the syenites. The entire rock series is characterized by high Ba and Sr concentrations in the bulk rock samples (3000–7000 ppm) and in feldspars (up to 1 wt.%). The mafic magma had amphibole at the liquidus at 1010–1030 °C based on amphibole geothermometer. Temperatures as low as this were due to high H2O and P2O5 contents in the melt (up to 4–6 and 2 wt.%, respectively). Crystallization of the syenitic magmas began at about 850 °C (based on ternary feldspar thermometry). The series was formed at an oxygen fugacity from the NNO to HM buffer, or even higher.

The evolution of the alkali monzodiorite–syenite series by fractional crystallization of a tephritic magma is established on the basis of geological, mineralogical, geochemical and Sm–Nd and Rb–Sr isotope data. The geochemical modeling suggests that fractionation of amphibole with subordinate apatite from the tephrite magma leaves about 73 wt.% of the residual monzonite melt. Further extraction of amphibole and plagioclase with minor apatite and Fe–Ti oxides could bring to formation of a syenite residuum. Rb–Sr isotopic analyses of biotite, apatite and whole-rock samples constrain the minimum age of basic intrusions at ca. 130 Ma and that of cross-cutting granite pegmatites at ca. 120 Ma. Hence the entire evolution took place in an interval of ≤10 My. Initial 87Sr/86Sr ratios for the mafic rocks range from 0.70511 to 0.70514, and for syenites from 0.70525 to 0.70542. Initial Nd (130 Ma) values for mafic rocks vary from −1.9 to −2.4, and for syenites from −2.9 to −3.5. In a Nd(T) vs. (87Sr/86Sr)i diagram, all rock types of the complex fall in the enriched portion of the Mantle Array, suggesting their derivation from a metasomatized mantle source. However, the small but distinguishable difference in Sr and Nd isotopic compositions between mafic rocks and syenites probably resulted from mild (10–20%) crustal contamination during differentiation. Large negative Nb anomalies are interpreted as a characteristic feature of the source region produced by Precambrian fluid metasomatism above a subduction zone rather than by crustal contamination.  相似文献   


13.
Elizabeth Y. Anthony   《Lithos》2005,80(1-4):61-74
This review, in honor of Ilmari Haapala's retirement, reflects on lessons learned from studies of three granitic systems in western North America: (1) Mesoproterozoic samples from west Texas and east New Mexico; (2) Laramide granitic systems associated with porphyry-copper deposits in Arizona; and (3) granites of the Colorado Mineral Belt. The studies elucidate relationships amongst tectonic setting, source material, and magma chemistry.

Mesoproterozoic basement samples are from two different felsic suites with distinct elemental and isotopic compositions. The first suite, the “plutonic province”, is dominantly magnesian, calc-alkalic to alkali-calcic, and metaluminous. It has low K2O/Na2O and Rb/Sr, and Nd model ages of 1.56 to 1.40 Ga. The second suite, the “Panhandle igneous complex”, is magnesian, metaluminous, alkalic, and is part of the Mesoproterozoic belt of magmatism that extends from Finland to southwestern United States. Samples from the Panhandle igneous complex demonstrate three episodes of magmatism: the first pulse was intrusion of quartz monzonite at 1380 to 1370 Ma; the second was comagmatic epizonal granite and rhyolite at 1360 to 1350 Ma. Both of these rock types are high-K to slightly ultra-high-K. The third pulse at 1338 to 1330 Ma was intrusion of ultra-high-K quartz syenite. Nd model ages (1.94 to 1.52 Ga) are distinct from those of the “plutonic province” and systematically older than crystallization ages, implying a substantial crustal input to the magmas.

At the Sierrita porphyry-copper deposit in the Mazatzal Province of southeastern Arizona, trace element, Sr, and Nd isotopic compositions were determined for a suite of andesitic and rhyolitic rocks (67 Ma) intruded by granodiorite and granite. Isotopic composition and chemical evolution are well correlated throughout the suite. Andesite has the least negative initial εNd (−4.3) and lowest 87Sr/86Sri (0.7069). It is also the oldest and chemically most primitive, having low concentrations of Rb, SiO2, and high concentrations of transition elements. These parameters change through the system to the youngest unit (granite), which has the most negative εNd (−8.5), the highest 87Sr/86Sri (0.7092), and is chemically most evolved. Correlation between chemical and Nd isotopic evolution probably resulted from a continuous process of progressive assimilation, in which mafic magmas invade and incorporate continental crust. Deposits in Arizona with εNd values more negative than the −8.5 of Sierrita lie in the older Yavapai province in the northwestern part of the state. The difference in the most negative epsilon Nd implies that Nd isotopic signature is sensitive to the age of the Precambrian domain.

The granites from the Colorado Mineral Belt were emplaced during the transition from Laramide convergence to mid-Tertiary extension. Three different groups of granites are recognized. The first is Laramide and was formed during assimilation-fractional crystallization involving lower crustal mafic source materials; the second and third groups are mid-Tertiary and represent intracrustal melting of heterogeneous sources. This change in source regions and melt regimes in transition from convergence to extension is fundamental to the Mesozoic and Cenozoic evolution of western North America.  相似文献   


14.
Jifeng Ying  Xinhua Zhou  Hongfu Zhang 《Lithos》2004,75(3-4):413-426
Major and trace element and Nd–Sr isotope data of the Mesozoic Laiwu–Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu–Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/86Sr (0.7095–0.7106) and very low Nd (−18.2 to −14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd–Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.  相似文献   

15.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   


16.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   

17.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

18.
Tertiary basaltic magmatism in Serbia occurred through three episodes: (i) Paleocene/Eocene, when mostly east Serbian mafic alkaline rocks (ESPEMAR) formed, (ii) Oligocene/Miocene, dominated by high-K calc–alkaline basalts, shoshonites (HKCA–SHO) and ultrapotassic (UP) rocks, and (iii) Pliocene episode when rocks similar to (ii) originated. In this study, the geodynamics inferred from petrogenesis of the (i) and (ii) episodes are discussed.

The ESPEMAR (62–39 Ma) occur mainly as mantle xenolith-bearing basanites. Their geochemical features, such as the REE patterns, elevated HFSE contents and depleted Sr–Nd isotope signatures, indicate a relatively small degree of melting of an isotopically depleted mantle source. Their mantle-normalized trace element patterns are flat to concave and “bell-shaped”, characteristic of an OIB source free of subduction component. 87Sr/86Sri and 143Nd/144Ndi isotope ratios (0.7030–0.7047 and 0.5127–0.5129, respectively) indicate a depleted source for the ESPEMAR similar to the European Asthenospheric Reservoir (EAR).

The HKCA–SHO rocks (30–21 Ma) occur as basalts, basaltic andesites and trachyandesites. They show enrichment in LILE and depletion in HFSE with all the distinctive features of calc–alkaline arc-type magmatism. This is coupled with somewhat enriched Sr–Nd isotope signature (87Sr/86Sri=0.7047–0.7064, 143Nd/144Ndi=0.5124–0.5126). All these features are characteristic of subduction-related metasomatism and fluxing of the HKCA–SHO mantle source with fluids/melts released from subducted sedimentary material.

UP rocks (35–21 Ma) appear as (i) Si-rich lamproites and related rocks and (ii) olivine leucitites and related rocks. UP rocks have high-LILE/HFSE ratios with enrichment for some LILE around 1000× primitive mantle, troughs at Nb and Ti, and peaks of Pb in their mantle-normalized patterns. They also show highly fractionated REE patterns (La/Yb up to 27, LaN up to 400). The isotopic ratios approach crustal values (87Sr/86Sri=0.7059–0.7115 and 143Nd/144Ndi=0.5122–0.5126), and that signature is typical for ultrapotassic rocks worldwide.

The Paleocene/Eocene episode and formation of the ESPEMAR is referred to as asthenospheric-derived magmatism. This magmatism originated through passive riftlike structures related to possible short relaxational phases during predominantly collisional and compressional conditions. The Oligocene/Miocene episode and formation of HKCA–SHO and UP rocks were dominated by lithospheric-controlled magmatism. Its origin is connected with the activity of a wide dextral wrench corridor generated along the axis of the Dinaride orogen which collapsed in response to thickened crust caused by earlier compressional processes.

To explain conditions of these two magmatic events, a three-stage geodynamic model has been proposed: (1) subduction–termination/collision stage (Paleocene/Eocene), (2) collision stage (Eocene) and (3) postcollision/collapse stage (Oligocene/early Miocene).  相似文献   


19.
Ryuichi Shinjo  Yuzo Kato   《Lithos》2000,54(3-4):117-137
The magmatism at the axial zone of the middle Okinawa Trough, a young continental back-arc basin, comprises a bimodal basaltic–rhyolitic suite, accompanied by minor intermediate rocks. We report major and trace element and Sr–Nd isotopic data for the intermediate to silicic suites, to provide constraints on their petrogenesis. The rhyolites, recovered as lava and pumice, fall into three geochemical groups (type 1, 2, and 3 rhyolites). Type 1 rhyolites have 87Sr/86Sr (0.7040–0.7042) and 143Nd/144Nd (0.5128–0.5129) identical to those of associated basalts, and are characterized by highly fractionated REE patterns. Petrogenesis of type 1 rhyolites is explicable in terms of fractional crystallization of the associated basalt. In contrast, type 2 rhyolites and andesite have slightly higher 87Sr/86Sr (0.7044–0.7047) but similar 143Nd/144Nd (0.5128) compared to those of the basalts. The compositions of type 2 rhyolite and andesite can be explained by assimilation and fractional crystallization (AFC) processes of the basalt magma; quantitative analysis suggests assimilation/fractional crystallization (Ma/Mc) ratios of ≤0.05. Hybrid andesite generated by mixing of evolved basalt and type 1 rhyolite is also present. We emphasize that mechanical extension in this part of the Okinawa Trough involves gabbroic lower crust that resulted from fractionation of mantle-derived basaltic magmas. Type 3 rhyolite occurs only as pumice, which makes its derivation questionable. This rhyolite has major and trace element compositions and Sr–Nd isotopic ratios, which suggests that it may be derived from volcanic activity on the southern Ryukyu volcanic front, and arrived in the Okinawa Trough by drifting on the Kuroshio Current.  相似文献   

20.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号