首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   

2.
Hättestrand, M. & Robertsson, A.‐M. 2010: Weichselian interstadials at Riipiharju, northern Sweden – interpretation of vegetation and climate from fossil and modern pollen records. Boreas, 10.1111/j.1502‐3885.2009.00129.x. ISSN 0300‐9483. The most complete records of Weichselian ice‐free conditions in northern Sweden have been retrieved from kettleholes in the Riipiharju esker. In an earlier study, the Riipiharju I core was described as containing two Weichselian interstadials and Riipiharju was chosen as type site for the second Weichselian interstadial in northern Sweden. Here, we present a palynological investigation of two new sediment cores (Riipiharju II and III) retrieved from Riipiharju. Together, the new cores comprise a late cold part of the first Weichselian interstadial recorded in northeastern Sweden (Tärendö I, earlier correlated with Peräpohjola in Finland) as well as a long sequence of the second Weichselian interstadial (Tärendö II, earlier named Tärendö). The results indicate that the climate during deposition of the Tärendö II sequence was more variable than earlier suggested. According to the present interpretation it was relatively warm in the early part of Tärendö II; thereafter a long cold phase persisted, and finally the climate was warmer again in the late part of Tärendö II. The warm phases are characterized by Betula‐dominant pollen assemblages, while the cold phase is characterized by high percentages of Artemisia and Gramineae pollen. Since there is still no firm chronology established of the interstadials in northeastern Sweden, two possible correlations are discussed; either Tärendö I and II are correlated with Brörup (MIS 5c) and Odderade (MIS 5a), or, perhaps more likely, they are correlated with Odderade and early Middle Weichselian (MIS 3) time.  相似文献   

3.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   

5.
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U–Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems.The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U–Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10–20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70–110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events.Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.  相似文献   

6.
We present the first geochemically confirmed finding of the Laacher See Tephra (LST) on the Swedish mainland, now the northernmost extension of the LST. Sediments were sampled at the Körslättamossen fen, southernmost Sweden, and a high‐concentration cryptotephra occurrence (>65 000 shards cm?3) of the LST was found in a sequence of calcareous gyttja. Tephra identification was confirmed by geochemical analysis using field‐emission electron probe microanalysis and through comparison of the results with published LST data from proximal sites and distal sites north‐east of Laacher See. The LST has previously been divided into eruption phases suggested to have spread in several dispersal fans, but it was not possible to confidently determine the phase of the tephra here closer than to the MLST or ULST. The finding of the LST presented here further strengthens the potential of tephrochronological studies in the south Scandinavian region.
  相似文献   

7.
Wohlfarth, B. 2010: Ice‐free conditions in Sweden during Marine Oxygen Isotope Stage 3? Boreas, 10.1111/j.1502‐3885.2009.00137.x. ISSN 0300‐9483 Published and unpublished 14C dates for Sweden older than the Last Glacial Maximum ice advance were evaluated. Acceptable 14C dates indicate that age ranges for interstadial organic material in northern and central Sweden are between c. 60 and c. 35 cal. kyr BP and for similar deposits in southern Sweden are between c. 40 and c. 25 cal. kyr BP, which is in good agreement with recently derived Optical Stimulated Luminescence ages. 14C dates on mammoth remains show a larger scatter, possibly as a result of incomplete laboratory pretreatment. A possible scenario based on calibrated 14C dates from interstadial deposits is that central and northern Sweden was ice‐free during the early and middle part of Marine Oxygen Isotope Stage 3 and that southern Sweden remained ice‐free until c. 25 cal. kyr BP. A first ice advance into northern and central Sweden might have occurred as late as around 35 cal. kyr BP, more or less coeval with the Last Glacial Maximum ice advance onto the Norwegian shelf. To test the conclusions drawn here, new multi‐proxy and high‐resolution investigations of several key sites in north, central and south Sweden are required.  相似文献   

8.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
RbSr isotopic analyses of 10'whole-rock samples from the controversial peralkaline Norra Kärr complex of southern Sweden suggest an age (1580±62 m.y.) considerably older than had previously been anticipated, and indicate an initial 87Sr/86Sr ratio of 0.7072±0.0035 (errors at 2σ). The isotopic data are consistent with a primary magmatic origin for the Norra Kärr agpaites, but data from 8 mineral separates show that they have experienced at least one period of metamorphic disturbance since the original intrusion; the last episode of isotopic readjustment must have occurred after 1250 m.y. before present, and is attributed to the Sveconorwegian (Grenville) metamorphism.  相似文献   

10.
Boulders of the Younger Dryas Salpausselkä I (Ss I) formation west of Lahti, southern Finland, were sampled for surface exposure dating. The 10Be concentrations, determined by accelerator mass spectrometry, yield minimum exposure ages of 11 930 ± 950, 11 220 ± 890, 11 050 ± 910 and 11 540 ± 990 years, using recently published production rates scaled for latitude and elevation. This includes a correction to the production rate resulting from postglacial uplift of the Fennoscandian lithosphere (i.e. changing elevation) during the time of exposure. The error‐weighted mean exposure age of 11 420 ± 470 years of the analysed boulders agrees with previous varve dates of Ss I, which range from 11 680 to 11 430 calendar years BP. However, erosion has to be taken into account as a process affecting rock surfaces and therefore influencing exposure ages. Available information suggests an erosion rate of 5 mm/kyr, which increases the error‐weighted mean exposure age to a value of 11 610 ± 470 years. Within the errors, the formation of Ss I in the Vesala area west of Lahti falls into the Younger Dryas time bracket, as defined by the GRIP and GISP 2 ice core (Greenland).  相似文献   

11.
St. Amour, N. A., Hammarlund, D., Edwards, T. W. D. & Wolfe, B. B. 2010: New insights into Holocene atmospheric circulation dynamics in central Scandinavia inferred from oxygen‐isotope records of lake‐sediment cellulose. Boreas, Vol. 39, pp. 770–782. 10.1111/j.1502‐3885.2010.00169.x. ISSN 0300‐9843 Cellulose‐inferred lakewater oxygen‐isotope records have been obtained from two hydrologically open basins (Lake Spåime and Lake Svartkälstjärn), located on a west–east transect across central Sweden, to investigate changes in atmospheric circulation patterns during the Holocene. The Lake Spåime δ18O record is sensitive to changes in the seasonal distribution of precipitation in the Scandes Mountains of west‐central Sweden, and thus generally portrays variations in δ18O of precipitation (δ18OP) that are governed predominantly by the influence of air masses originating from the North Atlantic. In contrast, the Lake Svartkälstjärn δ18O record appears to reflect the varying influence of air masses delivering moisture from the North Atlantic and the Baltic Sea. A comparison of inferred changes in δ18OP over the Holocene between the two sites reveals systematic patterns of variability over widely different time scales. These include: (1) a previously recognized long‐term regional decline in δ18OP, possibly in response to the declining vigour of Northern Hemisphere atmospheric circulation related to decreasing summer solar insolation; (2) newly identified inverse centennial‐ to millennial‐scale δ18OP fluctuations at the two sites that may be linked to changes in modes of atmospheric circulation analogous to those described at interannual to multidecadal time scales by the North Atlantic Oscillation (NAO) index; and (3) a prolonged interval of apparent climatic stability in the mid‐Holocene (c. 6300–4200 cal. yr BP) characterized by persistently negative NAO‐like circulation.  相似文献   

12.
High‐resolution studies were performed on late‐glacial sediments from a small lake in western Denmark with respect to lithology, geochemistry, stable isotopes, pollen stratigraphy and radiocarbon dating on terrestrial macrofossils. One purpose was to detect the so‐called Gerzensee oscillation, or the GI‐1b event, in the later part of the Allerød warm period, and to describe the environmental impact of this short cooling. The other aim was to test the hypothesis that considerable Δ14C changes occur over this time, which can be related to ocean ventilation/thermohaline circulation changes. We find that the GI‐1b event had a major impact on both terrestrial and limnic ecosystems: large vegetation changes, increased soil erosion and lowered aquatic production. By correlations to events in the GRIP ice‐core and 14C patterns in the Cariaco basin we also transformed our 14C dated record into calendar years to calculate Δ14C values. The 14C dates show that the GI‐1b event both preceded, and was part of, the 11 400–11 300 14C yr BP radiocarbon plateau, and was followed by the 11 000–10 900 14C yr BP plateau; thus the later part of the event coincides with a distinct age decline. This delayed age drop (Δ14C rise) in relation to the hypothetical triggering mechanism behind the event, decreased ocean ventilation, could be explained by redeposited macrofossils at the onset of GI‐1b. This phenomenon, also seen at the onset of Younger Dryas, may also reflect increased soil erosion and redeposition at the start of cold periods. The independent Cariaco Basin record, however, implies that the very end of the cool GI‐1b event is related to a distinct rise in Δ14C. Likewise, the 10Be record from GISP2 shows a distinct rise in the middle of the event, precluding decreased solar forcing as the trigger of the climate event, but making it likely that high cosmic ray flux (low solar activity) may be the cause of the rising atmospheric 14C content. We thus conclude that the Δ14C changes over the Gerzensee oscillation (GI‐1b), being one of several coolings during the Last Termination, does not seem to be related to ocean ventilation changes. The reason behind this lack of coincidence between rising Δ14C and a fairly distinct Northern Hemisphere cooling may be due to the fact that the oceanic changes during some of these coolings are too subtle to give an atmospheric 14C imprint, or that an anti‐phase relationship between the two hemispheres blurs the Δ14C signal, or, finally, that a partly unknown mechanism may lie behind such coolings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Cosmogenic nuclides, measured in quartz from recent river bedload, provide a novel tool to quantify catchment‐wide erosion rates at geologically meaningful time scales. Here we present an analysis of the geomorphological evolution of the 350 km2 Wutach catchment in the uplands of the south‐west German Black Forest. The robustness of the method is demonstrated by the fact that, although the area was affected by river capture at 18 kyr bp , the formed gorge is so narrow that spatially averaged erosion rates were not resolvably perturbed. However, because cosmogenic nuclides preserve an erosion memory of several thousand years, the only perturbation introduced was detected in the minor areas that have been subject to the last maximum glaciation. In unglaciated areas, an important relationship between lithology and erosion can by quantified: sandstone lithologies erode at 12–18 mm kyr?1, granite lithologies at 35–47 mm kyr?1 and limestone lithologies (as deduced from river load gauging) at 70–90 mm kyr?1.  相似文献   

14.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The marine benthic fauna and the δ18Oc of foraminifers and ostracods from six sites situated on a west–east transect through central Sweden have been analysed in order to estimate the palaeosalinity and palaeocirculation in this shallow‐marine environment. The measurements have been undertaken on material from the early Preboreal, when the Baltic Basin was in contact with the North Sea through straits in central Sweden. The δ18Oc values have a more negative value towards the east, indicating decreasing salinity. This was the result of limited possibilities for marine water to penetrate into the Baltic Basin and the mixing with freshwater from the melting Fennoscandian ice‐sheet. Four water masses existed in the area: a surface layer of freshwater, marine water from the North Sea, brackish–marine intermediate water on the Swedish west coast and brackish Yoldia Sea water in the Baltic Basin. The chronology is based on radiocarbon dates of marine fossils and, at one site, on the occurrence of the Vedde Ash (10 400–10 300 14C yr BP). This is the first record from marine settings in Sweden. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A large travertine outcrop south of Errachidia, southern Morocco, was studied and U/Th dated. The carbonate fraction was provided by groundwaters then, as now, from the eastern High Atlas percolating through the regional Infra-Cenomanian aquifer. There were two main periods of accumulation at ca 262 kyr BP and 20–11.5 kyr BP separated by a long discontinuity with some limited weathering and erosion and correlated in part with a period of erosion at 30–20 kyr BP further to the west. The two travertine-deposition periods suggest increased rainfall and/or cooler thermal conditions in the eastern High Atlas source regions. Massive travertine accumulation ceased at the end of the Upper Pleistocene. To cite this article: L. Boudad et al., C. R. Geoscience 335 (2003).To cite this article: L. Boudad et al., C. R. Geoscience 335 (2003).  相似文献   

17.
Paleoenvironmental reconstructions from Little Llangothlin Lagoon have been used to argue for early European impact on the eastern Australian landscape. In particular, these studies have argued for European arrival on the New England Tablelands at about 1800 AD, with significant impacts including the clearance of one species of Casuarina before 1820 AD and significant erosion by 1836 AD (Gale et al., 1995; Gale and Pisanu, 2001; Gale and Haworth, 2002, 2005). We have re-cored the lagoon, dated the cores using 210Pb and radiocarbon, and counted pollen and other proxies. Our 210Pb results indicate that 210Pb background was achieved stratigraphically later than the erosion event and we have three early Holocene radiocarbon ages in the erosion event interval. We conclude that the ‘erosion event’ predates European settlement. The 210Pb results indicate much less erosion in response to European settlement than suggested by these earlier studies. We also find no notable decline in Casuarina in the pollen record spanning the time of initial European impact, and in fact we find very little Casuarina in the record. Instead of a Casuarina dominated vegetation we conclude that the area was dominated by open Eucalypt forest prior to European settlement. Rather than changes in the regional vegetation in the early 19th century, we attribute changes in the palynoflora spanning the ‘erosion event’ to changes within the lake/wetland and in particular to changes in the dominance of different species of Myriophyllum; most likely due to water depth fluctuation. This site has stood out as indicating an earlier European impact than other localities in eastern Australia, beyond the original limits of settlement near Sydney. Our findings suggest that a more traditional interpretation of this site is warranted and that no very early impact is discernable.  相似文献   

18.
Holocene high-resolution cores from the margin of the Arctic Ocean are rare. Core P189AR-P45 collected in 405-m water depth on the Beaufort Sea slope, west of the Mackenzie River delta (70°33.03′N and 141°52.08′W), is in close vertical proximity to the present-day upper limit of modified Atlantic water. The 5.11-m core spans the interval between ∼6800 and 10,400 14C yr B.P. (with an 800-yr ocean reservoir correction). The sediment is primarily silty clay with an average grain-size of 9 φ. The chronology is constrained by seven radiocarbon dates. The rate of sediment accumulation averaged 1.35 mm/yr. Stable isotopic data (δ18O and δ13C) were obtained on the polar planktonic foraminifera Neogloboquadrina pachyderma (s) and the benthic infaunal species Cassidulina neoteretis. A distinct low-δ18O event is captured in both the benthic and planktonic data at ∼10,000 14C yr B.P.—probably recording the glacial Lake Agassiz outburst flood associated with the North Atlantic preboreal cold event. The benthic foraminifera are dominated in the earliest Holocene by C. neoteretis, a species associated with modified Atlantic water masses. This species decreases toward the core top with a marked environmental reversal occurring ∼7800 14C yr B.P., possibly coincident with the northern hemisphere 8200 cal yr B.P. cold event.  相似文献   

19.
Erbs‐Hansen, D. R., Knudsen, K. L., Gary, A. C., Jansen, E., Gyllencreutz, R., Scao, V. & Lambeck, K. 2011: Late Younger Dryas and early Holocene palaeoenvironments in the Skagerrak, eastern North Atlantic: a multiproxy study. Boreas, 10.1111/j.1502‐3885.2011.00205.x. ISSN 0300‐9843 A high‐resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multiproxy analyses of core MD99‐2286 combined with palaeowater depth modelling for the area. The late Younger Dryas was characterized by a cold ice‐distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis‐dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom‐water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south‐central Sweden, which led to a strong stratification of the water column at MD99‐2286, as also indicated by C. neoteretis. A short‐term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice‐dammed lake in southern Norway, the Glomma event. After the last drainage route across south‐central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with a stable inflow of waters from the North Atlantic through the Norwegian Trench and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short‐term cooling around 8300–8200 cal. a BP, representing the 8.2 ka event.  相似文献   

20.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号