首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
杭州西湖底泥磷分级分布   总被引:24,自引:2,他引:22  
徐骏 《湖泊科学》2001,13(3):247-254
采用磷分级分离法对在杭州西湖采集的柱状泥样进行了磷分级提取,结果发现:HCl-rP即钙矿磷占据了西湖底泥总磷含量的30%-70%,其余依次为NaOH-rP(16%-40%)和NH4Cl-rP(0.6%-10%);活性磷由NoOH-rP和NH4Cl-rP构成,占总沉积磷的20%-40%,各磷分级组分和活性磷的垂直分布与总磷基本一致,含量随泥层深度的降低逐级增加,在10-30cm处形成峰值,但表层的蓄积量又出现逐层下降的趋势。  相似文献   

2.
Phosphorus (P) fractions and their bioavailability in the sediments from El Mex Bay and Lake Mariut in Egypt were investigated using different chemical extraction methods. Sodium bicarbonate (NaHCO3) extractable P (Olsen-P) was the largest fraction (14.42%), followed by algal available P (AAP) (3.56%), water soluble P (WSP) (0.79%), and readily desorbable P (RDP) (0.06%) for El Mex Bay. While AAP con-tributed 9.94% to total P in sediments from Lake Mariut, Olsen-P 8.53%, WSP 4.11%, and RDP 0.92%. Summation of the bioavailable P fractions didn't exceed the sediment quality guidelines, and, therefore, P doesn't represent a danger to marine organisms. Correlation coefficients showed that no apparent relations between total P (TP) and iron (Fe), aluminum (Al), and calcium (Ca) in the sediments. Fur-thermore, Fe:P ratio was less than 15 indicting that there was not enough Fe in surface sediments to bind to P at most of the sampling sites. The positive correlation between TP and organic matter (OM) for Lake Mariut and El Mex Bay sediments indicated that the organic matter content of the sediment was a useful predictor of the total phosphorus content. Data from this study constitute a baseline of phosphorus bioavailability in sediments from El Mex Bay and Lake Mariut and could be used as a reference for future studies on the changes of bioavailable and residual phosphorus fractions over time.  相似文献   

3.
王琦  姜霞  金相灿  徐玉慧 《湖泊科学》2006,18(2):120-126
采用EDTA螯合剂法和不同的化学提取法,研究了太湖3个不同营养水平湖区中8个位点表层沉积物总磷、各组分磷及生物可利用磷的含量分布,探讨了太湖不同营养水平湖区表层沉积物的释磷潜力和生物可利用磷的来源.结果表明,太湖不同营养水平湖区表层沉积物总磷、无机磷和生物可利用磷含量分布差异较大,且与各湖的营养水平相一致.有机磷含量与有机质和含水率显著相关;沉积物中Fe-P和Ca-P对生物可利用磷的贡献较大,这部分磷具有较大的潜在释放风险.  相似文献   

4.
The objective of this study was to evaluate the concentration and distribution of heavy metals in the sediments of Paulo Gorski Lake, as well as the metals’ bioavailability and potential ecological risk, and to define the anthropogenic and natural heavy metal contributions to the lake. The chemical elements calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), and zinc (Zn) were quantified by flame atomic absorption spectrophotometry with two extraction methods to quantify the bioavailable and non-bioavailable fractions. The data were evaluated using multivariate statistics and sediment quality indices. All sediment collection points (S1, S2, S3, S4 and S5) are different in terms of the concentration of heavy metals, except for S4 and S5, which were statistically equal. The bioavailable fraction of the elements in the sediment follows the sequence Pb>Cu>Mn>Zn>Ni>Cr>phosphorus (P) for all points. The elements Co, Cr, Pb, and Zn showed moderate to considerable contamination at all points. Only points S3 and S5 had moderate ecological risk. Urbanization has been affecting Paulo Gorski Lake via the input of chemical elements, especially Co and Pb. The points most affected by heavy metal contamination are S3 and S5 when the sedimentological sensitivity factor is considered. The lake has high hydrodynamics, causing some of the contaminants that enter the system to leave it, leading to potential negative impacts downstream.  相似文献   

5.
Variations in phosphorus speciation in two sets of simulated riparian zones with and without Perennial ryegrass were compared. Each set consisted of four units, each measuring 700 mm × 200 mm × 200 mm, which were enhanced with 0, 2.5, 5, and 7.5% red mud (RM) by weight. The levels of total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) in the effluent were analyzed, and phosphorus fractionation in the media were also determined after the systems had been operational for 3 months. The results showed that the unit received 2.5% RM had the highest rate of phosphorus removal, including TP, TDP, SRP, particulate phosphorus (PP), and dissolved organic phosphorus (DOP) were present at the average concentrations of 0.17, 0.10, 0.07, 0.08, and 0.03 mg/L in the effluent. Sequential phosphorus fractionation showed that calcium‐bound phosphorus (Ca–P) was the major component, indicating that the addition of RM induced aluminum/iron‐bound phosphorus (Al/Fe–P), which was intensely bioactive, to form intractable Ca–P, which further inhibited the release of phosphorus from the media. However, the presence of P. ryegrass had little effect on the removal of phosphorus. Therefore, RM, when used directly in riparian zones at a suitable concentration, is a novel and low cost additive material that can be used to remove phosphorus from reclaimed water.  相似文献   

6.
Between 1999 and 2002, a former open-cast mine was filled with river water forming the recent Lake Goitsche. During filling initially acid water was neutralised. Phosphorus (P) imported from Mulde River was nearly completely removed from the water column by co-precipitation with iron (Fe) and aluminium (Al) and deposited in the sediment.During extremely high waters of the Mulde River in 2002, a dike breach facilitated a second high import of P into Lake Goitsche with suspended and dissolved matter. The analysis of total phosphorus (TP), however, showed that P again had been eliminated from the water body a few months after the flood event. Sediment investigations before filling with river water, during filling, and after the flood event were used to analyse the process of P immobilisation in a lake with acid mine drainage history.The ratios of Fe to soluble reactive P (SRP) of sediment pore water were up to three orders of magnitudes higher than in natural lakes and can serve as an indicator for potential internal P loading from sediments. The SRP concentrations at the oxic/anoxic boundary were near or below the limit of quantification (< 0.2 μmol/L). Fe and manganese (Mn) redox cycling were responsible for hindering P dissolution from sediment to lake water.Finally it can be stated, that the risk of eutrophication for such a lake seems to be low.  相似文献   

7.
研究南四湖消落带底泥有机磷赋存形态及分布特征,有利于全面揭示湖区各形态磷迁移转化规律,对南四湖富营养化防控及南水北调东线调水水质保障具有重要的科学意义。以南四湖消落带底泥为研究对象,采用改进Hedley连续分级提取法测定底泥中各形态有机磷含量,通过紫外可见分光光谱与三维荧光光谱技术表征底泥有机分子结构特征及稳定性,反映消落带有机磷结构及稳定性差异,运用Pearson相关性分析及主成分分析解析底泥各形态磷与其他理化指标的相关性。研究结果表明,南四湖消落带底泥总磷含量均值为679.90 mg/kg,其中有机磷(OP)占比20.03%~45.69%。各赋存形态有机磷含量及相对比例大小依次为:残渣态有机磷(67.58%)>钙结合态有机磷(16.61%)>铁/铝结合态有机磷(7.62%)>碳酸氢钠提取态有机磷(5.97%)>水提取态有机磷(2.22%)。南四湖消落带底泥OP含量及形态主要受内源影响,主要来自内源性微生物代谢。南四湖消落带西岸底泥磷释放风险高于东岸和南岸消落带。相关性分析发现,消落带底泥pH与磷含量显著负相关,表明随着底泥碱性的增强可能导致底泥磷向水体中释放的风险更高;底泥有机质与OP显著正相关,表明有机质可能是OP的重要载体;主成分分析发现底泥各形态磷呈正相关性,表明消落带底泥各形态磷具有同源性。研究结果可为南四湖湖区内源磷释放控制及富营养化风险防控提供科学依据。  相似文献   

8.
Water treatment residuals (WTRs) are effective phosphorus (P) immobilizers that have been used in constructed wetlands (CWs). In CWs, dissolved oxygen (DO) levels vary from location to location and fluctuate over time. Therefore, this work accessed the stability of P saturated ferric and alum water treatment residuals (FARs) under low (<1 mg/L), medium (2–4 mg/L), and high (5–8 mg/L) DO levels. In the experiments, which had a 40‐day duration, three stages of P release from the P saturated FARs were observed: an initial rapid P desorption stage, followed by a P re‐adsorption stage, and a P desorption balance stage. The strongest bonding between P and FARs occurred at the low DO level. A limited amount of Fe and Al was released from the P saturated FARs. Interestingly, the P in the FARs tended to transform from the Al bound P to the Fe bound P, and this transformation was stronger at lower DO levels. However, no more than 1.12% of the total P in the P saturated FARs was desorbed under any of these DO levels. Therefore, FARs can be considered as a safe P adsorption medium for CWs.  相似文献   

9.
Abstract

Suspended sediment concentrations in the meltwater of Pindari Glacier were determined at regular intervals in four ablation seasons. The late ablation periods (September 1994 and October 1995) were characterized by a reduced level of sediment concentration, while the sampling periods of early ablation (May 1994 and July 1995) showed very high concentrations of suspended sediment in the meltwater. Grain size distribution shows the dominance of medium and coarse silt fractions of the mean size of the suspended sediments between 4.35 and 5.82 ø. Clay size constitutes about 7% of the total size population. The majority of the samples are poorly sorted, symmetrically to finely skewed and mesokurtic in nature. The grain shows texture of mechanical and chemical origin, in which mechanical texture is predominant on most of the grains. It was observed that the grains were mostly subangular to subrounded in shape with variable size ranges. Bulk sediment chemistry consists mostly (>70%) of the five elements, Si, Al, K, Fe and Mg. Iron (Fe) and Mn are dominant heavy metals and sediments show the elemental abundance in the order of Fe > Mn > Zn > Cu > Ni > Pb. The Chemical Index of Alteration (CIA) of suspended sediments (57) is relatively higher than in the case of average unweathered upper continental crust (~50) indicating a higher degree of weathering due to glacier grinding and crushing action. Quartz is the most dominant mineral, followed by mica, illite, feldspar and kaolinite.  相似文献   

10.
利用连续提取分级的方法定量分析阳宗海表层沉积物磷赋存形态,阐明了沉积物C、N、H和O组成及溶解有机质(DOM)紫外-可见光谱特征,探讨沉积物元素组成及DOM组成结构对不同形态磷含量的影响.结果表明:(1)沉积物潜在可移动磷含量在68.67~124.70 mg/kg之间变化,平均占总磷含量的9.81%,表现为BD-PNa OH-nr PNH_4Cl-P;沉积物稳定磷含量在496.73~908.28 mg/kg之间变化,平均占总磷含量的60.86%.(2)沉积物C、N含量和疏水性DOM光谱参数A_(240-400)表现出北部高、南部低的变化趋势,但H/C、O/C和(N+O)/C摩尔比和亲水性DOM光谱参数A_(240-400)变化趋势则与之恰好相反.(3)沉积物NH4Cl-P含量与C、N和H含量之间呈显著正相关,但与H/C、O/C、(N+O)/C摩尔比和亲水性DOM光谱参数E_2/E_3值之间呈显著负相关;NaOH-rP和BD-P+NaOH-rP含量均与O含量及O/H摩尔比呈显著负相关;NaOH-rP、BD-P+NaOH-rP和HCl-P均与疏水性DOM光谱参数A_(240-400)值之间呈显著正相关.因此,天然有机质元素组成及官能团结构是影响沉积物磷赋存形态的重要因素.  相似文献   

11.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

12.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   

13.
Algae which bloom in open water and accumulate in the littoral zones may affect the biogeochemical cycle of phosphorus in eutrophic lakes. To determine such effects, a part of the lakeshore with little allochthonous nutrient input in Taihu Lake, China was selected for this field study. Distinct differences in sedimentary P forms were found among the different littoral subzones. The surface sedimentary total phosphorus (TP) content was 655 mg/kg in the eulittoral subzone and 631 to 641 mg/kg in the infralittoral subzone. Both were much higher than that in the profundal zone (410 mg/kg). Calcium‐bound P (Ca‐P) was significantly correlated to exchangeable P (Ex‐P), and they both had the highest contents in the infralittoral subzone and the lowest in the profundal zone. The aluminum‐ and iron‐bound P (Al‐P, Fe‐P) contents decreased from land to water along the ecotone section. Lower Fe/P ratios and higher Al‐P/Fe‐P ratios appeared in the infralittoral subzone, as compared with the profundal zone. This suggested that the accumulated algae could lead to a great deposit of P in the littoral zones. However, the active sedimentary P form transformation in the littoral zones would also result in a partial release of the accumulated P to the overlying water.  相似文献   

14.
The ‘Chicken Creek’ artificial catchment area, Welzow-South, E Germany, created to study processes and structures of initial ecosystem development, discharges into a small experimental lake (A=3805 m2, V=3992 m3, zmax=2.4 m). This lake was man-made in 2005 and filled by natural surface runoff until January 2006. In summer 2006 and 2008, the actual development of sediments and the evolution of the phosphorus (P) cycle were studied. 19.7% of the original lake volume was filled by sediment within the first 3 years. A fine-grained sediment representing silt (6.3-63 μm) accumulated at high accretion rates at the deepest point (200 mm a−1, 0-24 mm week−1) due to massive erosion in the catchment. The sediment is low in organic matter (2.5-5.2%) and total P (TP, 0.31-0.97 mg g−1). Low amounts of P associated with degradable organic matter and surplus of metal hydroxides (Fe:P∼40, Al:P∼20) favor an efficient P binding and low dissolved P concentrations in pore water (1-107 μg l−1). Hence, the mineral sediment quality and the low rates of P release (0.06 mg m−2 d−1) revealed that a lake at an initial stage of development has essentially no sedimentary P cycle compared to eutrophic shallow lakes. However, the increasing emersed and submersed macrophyte growth will control further lake succession by intensifying the internal nutrient cycling. The macrophytes drive the evolution of a sedimentary P cycle by mobilizing and translocating P, by accumulating carbon and thus by stimulating microbial and redox processes.  相似文献   

15.
The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedley et al. or its subsequent modification is a well-known method to determine soil phosphorus forms. Hedley sequential fractionation technique separates the phosphorus into fractions based on their different chemical solubilities in extractants with certain chemical properties. Recently, synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy has been employed to measure soil phosphorus species directly and non-invasively. The XANES method provides information concerning local structure and chemical information of target elements at a molecular level. Thus, it can distinguish phosphorus fractions bound by metal oxides or hydroxides (such as Fe, Al, and Ca). In this present work, the phosphorus speciation of topsoil along a glacial foreland chronosequence in Gongga Mountain is determined using these two methods. The changes in soil phosphorus bioavailability along the 120-year-old chronosequence are assessed based on comparisons of the results obtained by these two methods. The results indicate that Hedley sequential fractionation technique shows a greater ability to determine soil bioavailable phosphorus (Resin-P and NaCHO3-P), while XANES is effective in distinguishing phosphorus bound by metal compounds. In the chronosequence, Ca- and Al-bound phosphorus were derived mainly from primary minerals, whose phosphorus contents decreased within 120 years of moraine weathering and soil development. The content of soil bioavailable phosphorus increased rapidly after 30 years since deglaciation. The increasing phosphorus bioavailability promoted the colonizing and primary succession vegetation.  相似文献   

16.
Barbro Uln 《水文研究》2003,17(4):747-758
During a 16 day period with pronounced snowmelt via surface runoff, high water concentrations (usually 0·4–0·5 mg l?1) of dissolved molybdate‐reactive phosphorus (MRP) were detected in surface runoff water from a clay soil of illite type. Other phosphorus fractions defined were: phosphorus in particles with a higher settling coefficient than 80 000 S (SPP); colloidal phosphorus caught on filters with a pore size of 0·2 µm but with a smaller settling coefficient (CPP); and dissolved phosphorus not reacting with molybdate (DUP). The order of concentrations was MRP > SPP > CPP > DUP. Nearly identical amounts of MRP, CPP, and DUP (in total 0·3 kg ha?1) were lost from a grass–clover ley and a ploughed soil. However, more of the heavier phosphorus‐containing material was lost from the ploughed area. In drainpipe water, CPP was the largest fraction (28%), and in stream water from mixed arable/forest land, MRP dominated (33%). Loss on ignition of the settling material slowly decreased from 10 to 8% (dry weight) during the snowmelt period. Total phosphorus concentrations in the material followed the runoff pattern, with slightly higher phosphorus concentrations during fast runoff. The large amounts of readily dissolved or colloidal‐bound phosphorus (70–80%) transported from this clay soil during snowmelt are discussed with regard to the use of grass buffer strips as a measure against phosphorus losses from arable land. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In high-elevation lakes of the Sierra Nevada (California), increases in phosphorus (P) supply have been inferred from changes in phytoplankton growth during summer. To quantify rates of sediment P release to high-elevation Sierran lakes, we performed incubations of sediment cores under ambient and reducing conditions at Emerald Lake and analyzed long-term records of lake chemistry for Emerald and Pear lakes. We also measured concentrations of individual P forms in sediments from 50 Sierra Nevada lakes using a sequential fractionation procedure to examine landscape controls on P forms in sediments. On average, the sediments contained 1,445 µg P g?1, of which 5 % was freely exchangeable, 13 % associated with reducible metal hydroxides, 68 % associated with Al hydroxides, and the remaining 14 % stabilized in recalcitrant pools. Multiple linear regression analysis indicated that sediment P fractions were not well correlated with soluble P concentrations. In general, sediments behaved as net sinks for P even under reducing conditions. Our findings suggest that internal P loading does not explain the increase in P availability observed in high-elevation Sierran lakes. Rather, increased atmospheric P inputs and increased P supply via dissolved organic C leaching from soils may be driving the observed changes in P biogeochemistry.  相似文献   

18.
Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment‐associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment‐associated chemical constituent concentrations for (1) baseline, (2) land‐use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment‐associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment‐associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges: Atlantic rivers (49%) > Pacific rivers (40%) > Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources. Almost all the elevated sediment‐associated chemical concentrations found in conterminous US coastal rivers are lower than worldwide averages. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Lakes are sensitive ecosystems and respond quickly to any natural or anthropogenic contamination,particularly in urban areas due to poor planning and mismanagement in urban settlement, encroachment, and anthropogenic pollution. In the current study, water and sediment geochemistry are used along with available time series of geospatial data sets to assess: a) provenance and sources of pollution in the lake sediment and water, b) health risk using various sediment and water quality indices, and c...  相似文献   

20.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号