首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
大别山北部超高压变质大理岩及其地质意义   总被引:3,自引:2,他引:3  
岩石学研究表明 ,大别山北部镁铁 超镁铁质岩带中白云质大理岩至少经历过三期变质阶段 :(1)榴辉岩相峰期变质阶段 ,矿物组合主要为方解石 +白云石 +金红石 +镁橄榄石 +钛 斜硅镁石 +富镁的钛铁矿±文石±石榴子石 ;(2 )麻粒岩相退变质阶段 ,矿物组合主要为方解石 +白云石 +金云母 +镁橄榄石 +透辉石 +钛铁矿 +尖晶石±斜方辉石等 ;(3)角闪岩相退变质阶段 ,主要矿物组合为方解石 +白云石 +磷灰石 +磁铁矿+榍石等。它的峰期变质矿物组合 ,类似于苏 鲁超高压大理岩 ,形成压力至少大于 2 .5GPa。这进一步证明 ,大别山北部大多数高级变质岩 (包括大理岩等 )都曾经过超高压变质作用 ,应属于印支期扬子俯冲陆壳的一部分。  相似文献   

2.
Small dolomite marble lenses and bands occur in the vast Caledonian migmatite and gneiss area of NW Spitsbergen (Svalbard archipelago). The fine-banded marbles contain numerous assemblages of minerals: calcite, dolomite, olivine, clinohumite, diopside, amphibole, chlorite, spiner and phologopite. The coexistence of calcite + dolomite + olivine + chlorite + spinel over the entire area indicates metamorphic temperatures of 600 to 680° at an estimated pressure of 4 kilobars. A temperature of near 600°C for the peak of metamorphism is suggested by mineral assemblages at the southernmost locality, Jäderinfjellet. Calcite-dolomite geothermometry indicated 595°C at the same locality. The spatial distribution of the marble assemblages suggests that metamorphism occurred under nearly isothermal conditions over an area of at least 25 by 30 kilometres.  相似文献   

3.
The solid‐state reaction magnesite (MgCO3) + calcite (aragonite) (CaCO3) = dolomite (CaMg(CO3)2) has been identified in metapelites from western Tianshan, China. Petrological studies show that two metamorphic stages are recorded in the metapelites: (1) the peak mineral assemblage of magnesite and calcite pseudomorphs after aragonite which is only preserved as inclusions within dolomite; and (2) the retrograde glaucophane‐chloritoid facies mineral assemblage of glaucophane, chloritoid, dolomite, garnet, paragonite, chlorite and quartz. The peak metamorphic temperatures and pressures are calculated to be 560–600 °C, 4.95–5.07 GPa based on the calcite–dolomite geothermometer and the equilibrium calculation of the reaction dolomite = magnesite + aragonite, respectively. These give direct evidence in UHP metamorphic rocks from Tianshan, China, that carbonate sediments were subducted to greater than 150 km depth. This UHP metamorphism represents a geotherm lower than any previously estimated for subduction metamorphism (< 3.7 °C km?1) and is within what was previously considered a ‘forbidden’ condition within Earth. In terms of the carbon cycle, this demonstrates that carbonate sediments can be subducted to at least 150 km depth without releasing significant CO2 to the overlying mantle wedge.  相似文献   

4.
This study investigates marbles and calcsilicates in Central Dronning Maud Land (CDML), East Antarctica. The paleogeographic positioning of CDML as part of Gondwana is still unclear; however, rock types, mineral assemblages, textures and P–T conditions observed in this study are remarkably similar to the Kerala Khondalite Belt in India. The CDML marbles and calcsilicates experienced a Pan-African granulite facies metamorphism at c. 570 Ma and an amphibolite facies retrogression at c. 520 Ma. The highest grade assemblage in marbles is forsterite+spinel+calcite+dolomite, in calcsilicates the assemblages are diopside+spinel, diopside+garnet, scapolite+wollastonite+clinopyroxene±quartz, scapolite±anorthite±calcite+clinopyroxene+wollastonite. These assemblages constrain the peak metamorphic conditions to 830±20 °C, 6.8±0.5 kbar and X CO2>0.46. During retrogression, highly fluoric humite-group minerals (humite, clinohumite, chondrodite) replaced forsterite, and garnet rims formed at the expense of scapolite during reactions with wollastonite, calcite or clinopyroxene but without involvement of anorthite. Metamorphic conditions were about 650 °C, 4.5±0.7 kbar, 0.2< X CO2fluid<0.36, and the co-existence of garnet, clinopyroxene, wollastonite and quartz constrains fO2 to FMQ-1.5 log units. Mineral textures indicate a very limited influx of H2O-rich fluid during amphibolite facies retrogression and point to significant variations of fluid composition in mm-sized areas of the rock. Gypsum was observed in two samples; it probably replaced metamorphic anhydrite which appears to have formed under amphibolite facies conditions. The observed extensive anorogenic magmatism (anorthosites, A-type granitoids) and the character of metamorphism between 610 and 510 Ma suggest that the crustal thermal structure was characterized by a long-lived (50–100 Ma) rise of the crustal geotherm probably caused by magmatic underplating.  相似文献   

5.
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O.  相似文献   

6.
A. Proyer  E. Mposkos  I. Baziotis  G. Hoinkes 《Lithos》2008,104(1-4):119-130
Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti–)clinohumite and phlogopite were observed in calcite–dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO–MgO–Al2O3–SiO2–CO2 (CMAS–CO2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite–calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO2, garnet has to be present in aluminous calcite–dolomite-marble at UHP conditions.  相似文献   

7.
The Mogok metamorphic belt of Palaeogene age, which records subduction‐ and collision‐related events between the Indian and Eurasian plates, lies along the western margin of the Shan plateau in central Myanmar and continues northwards to the eastern Himalayan syntaxis. Reaction textures of clinohumite‐ and scapolite‐bearing assemblages in Mogok granulite facies metacarbonate rocks provide insights into the drastic change in fluid composition during exhumation of the collision zone. Characteristic high‐grade assemblages of marble and calcsilicate rock are clinohumite+forsterite+spinel+phlogopite+pargasite/edenite+calcite+dolomite, and scapolite+diopside+anorthite+quartz+calcite respectively. Calculated petrogenetic grids in CaO–MgO–Al2O3–SiO2–H2O–CO2 and subsets of this system were employed to deduce the pressure–temperature–fluid evolution of the clinohumite‐ and scapolite‐bearing assemblages. These assemblages suggest higher temperature (>780–810°C) and [=CO2/(CO2+H2O) >0.17–0.60] values in the metamorphic fluid for the peak granulite facies stage, assuming a pressure of 0.8 GPa. Calcite grains commonly show exsolution textures with dolomite particles, and their reintegrated compositions yield temperatures of 720–880°C. Retrograde reactions are mainly characterized by a reaction zone consisting of a dolomite layer and a symplectitic aggregate of tremolite and dolomite grown between clinohumite and calcite in marble, and a replacement texture of scapolite by clinozoisite in calcsilicate rock. These textures indicate that the retrograde reactions developed under lower temperature (<620°C) and (<0.08–0.16) conditions, assuming a pressure of 0.5 GPa. The metacarbonate rocks share metamorphic temperatures similar to the Mogok paragneiss at the peak granulite facies stage. The values of the metacarbonate rock at peak metamorphic stage are, however, distinctly higher than those previously deduced from carbonate mineral‐free paragneiss. Primary clinohumite, phlogopite and pargasite/edenite in marble have F‐rich compositions, and scapolite in calcsilicate rock contains Cl, suggesting a contrast in the halogen compositions of the metamorphic fluids between these two lithologies. The metamorphic fluid compositions were probably buffered within each lithology, and the effective migration of metamorphic fluid, which would have extensively changed the fluid compositions, did not occur during the prograde granulite facies stage throughout the Mogok metamorphic belt. The lower conditions of the Mogok metacarbonate rocks during the retrograde stage distinctly contrast with higher conditions recorded in metacarbonate rocks from other metamorphic belts of granulite facies. The characteristic low conditions were probably due to far‐ranging infiltration of H2O‐dominant fluid throughout the middle segment of the Mogok metamorphic belt under low‐amphibolite facies conditions during the exhumation and hydration stage.  相似文献   

8.
An Al‐rich, SiO2‐deficient sapphirine–garnet‐bearing rock occurs as a metapelitic boudin within granulite facies Proterozoic charnockitic gneisses and migmatites on the island of Hisøy, Bamble Sector, SE Norway. The boudin is made up of peraluminous sapphirine, garnet, corundum, spinel, orthopyroxene, sillimanite, cordierite, staurolite and biotite in a variety of assemblages. Thermobarometric calculations based on coexisting sapphirine–spinel, garnet–corundum–spinel–sillimanite, sapphirine–orthopyroxene, and garnet–orthopyroxene indicate peak‐metamorphic conditions near to 930 °C at 10 kbar. Corundum occurs as single 200 to 3000 micron sized skeletal crystal intergrowths in cores of optically continuous pristine garnet porphyroblasts. Quartz occurs as 5–60 micron‐sized euhedral to lobate inclusions in the corundum where it is in direct contact with the corundum with no evidence of a reaction texture. Some crystal inclusions exhibit growth zoning, which indicates that textural equilibrium was achieved. Electron Back‐Scatter Diffraction (EBSD) studies reveal that the quartz inclusions share a common c‐axis with the host corundum crystal. The origin of the quartz inclusions in corundum is enigmatic as recent experimental studies have confirmed the instability of quartz–corundum over geologically realistic P–T ranges. The combined EBSD and textural observations suggest the presence of a former silica‐bearing proto‐corundum, which underwent exsolution during post‐peak‐metamorphic uplift and cooling. Exsolution of quartz in corundum is probably confined to fluid‐absent conditions where phase transitions by coupled dissolution–precipitation mechanisms are prevented.  相似文献   

9.
Mineral assemblages and chemical compositions of minerals foundin impure dolomitic marbles embedded in gneisses and migmatitesof the E. Greenland Caledonian fold belt (Scoresby Sund) suggestthat the marbles were metamorphosed near 630 °C at 5 kbpressure. The analysis of complex textural and mineralogicalrelations among minerals such as dolomite, calcite, forsterite,pargasite, chlorite, spinel, diopside and phlogopite led tothe conclusion that the major mineralogical features of therocks were probably caused by sodium metasomatism at constanttemperature and pressure. The effect of the inferred sodiummetasomatism may be summarized by three schematic reactionsall involving modal changes of excess dolomite, calcite, forsterite,chlorite and spinel: (a) nucleation and growth of pargasite,(b) resorption of phlogopite, and (c) growth of pargasite fromphlogopite.  相似文献   

10.
The Muzkol metamorphic complex in the Central Pamirs contains widespread occurrences of corundum mineralization, sometimes with gem-quality corundum. These occurrences are spatially related to zones of metasomatic alterations in calcite and dolomite marbles and crystalline schists. The calcite marbles contain corundum together with muscovite, scapolite, and biotite; the dolomite marbles contain corundum in association with biotite; and the schists bear this mineral coexisting with biotite and chlorite. All these rocks additionally contain tourmaline, apatite, rutile, and pyrite. The biotite is typically highly aluminous (up to 1.9 f.u. Al), and the scapolite is rich in the marialite end member (60–75 mol %). The crystallization parameters of corundum were estimated using mineral assemblages at T = 600–650°C, P = 4–6 kbar, X CO 2 = 0.2–0.5 at elevated alkalinity of the fluid. The Sr concentration in the calcite and dolomite marbles is low (345–460 and 62–110 ppm, respectively), as is typical of recrystallized sedimentary carbonates. The variations in the 87Sr/86Sr ratio in the calcite and dolomite marbles (0.70852–0.70999 and 0.70902–0.71021, respectively) were controlled by the introduction of radiogenic 87Sr during the metasomatic transformations of the rocks. The isotopic-geochemical characteristics obtained for the rocks and the results of numerical simulations of the fluid-rock interactions indicate that the corundum-bearing metasomatic rocks developed after originally sedimentary Phanerozoic carbonate rocks, with the desilication of the terrigenous material contained in them. This process was a manifestation of regional alkaline metasomatism during the closing stages of Alpine metamorphism. In the course of transformations in the carbonate reservoir, the juvenile fluid flow became undersaturated with respect to silica, which was a necessary prerequisite for the formation of corundum.  相似文献   

11.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

12.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

13.
Carbonatites are often of economic importance, which raises the problem of distinguishing carbonatites from limestones when either are metamorphosed to high-grade marbles. They can be of similar appearance, particularly those from the Proterozoic and Archaean of the Indian Subcontinent. This study also contributes to solving the problem of determining the frequency of alkaline and carbonatitic magmatism during the early history of the Earth.The mineral assemblage of apatite–magnetite–phlogopite–calcite is common to marbles of both carbonatite and limestone origin. If pyrochlore is present that identifies the rock as carbonatite; if anorthite, fassaite, scapolite or spinel then it was formerly a limestone. If these minerals are absent, then trace element analysis can supply the critical Sr and REE data, which are both normally high in carbonatitic rocks and low in former limestones. These distinguishing factors are applied to the metamorphic carbonate, pyroxenite, calcite–apatite rock complex at Borra, Eastern Ghats, India, which has been variously interpreted as formerly a carbonatite and as a limestone. The evidence shows that the Borra rocks are meta-sedimentary.  相似文献   

14.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

15.
Marble occurs abundantly in a 31,000 km2 segment of the southernGrenville Province of the Canadian Precambrian Shield, whereit is associated with quartzite, biotite-garnet gneiss, andamphibolite to form the Grenville Group. An 1800 km2 area onthe western margin of this segment, north of the Ottawa river,displays a great variety of carbonate rocks, which may be dividedinto two groups: (I) major marble, with calcite, dolomite, graphite, phlogopite,Ca amphibole, Ca pyroxene, forsterite, humite group minerals, (II) minor marble, with pink calcite, phlogopite, Ca amphibole,Ca pyroxene, K feldspar, scapolite, sphene. Rocks of the first group are associated with plagioclase gneissand amphibolite, and are metamorphosed limestone, little affectedby metasomatism; rocks of the second group, which are less common,are associated with potassium feldspar gneiss and heterogeneousgranitic and syenitic rocks, and are inferred to be metasomaticrocks. Numerous mineral reactions have taken place in the carbonaterocks during metamorphism. The calcite-dolomite reaction, whichgoverns the Mg content of calcite, indicates a metamorphic temperatureof about 650 °C. Forsterite was possibly produced from low-Alamphibole, and forsterite + spinel from high-Al amphibole. Thecrystallization of some silicate minerals in the minor marbleunits, and the enrichment in the contained calcite in Fe andSr are attributed to metasomatic reactions. Metamorphic ion-exchangereactions involving carbonates produced the following distributioncoefficients: Sr in calcite/Sr in dolomite = 2.5 Mn in calcite/Mn in dolomite = 0.89 Fe in calcite/Fe in dolomite = 0.29 from which inferences may be drawn concerning the distributionof these elements between the Ca and Mg sites within dolomiteduring metamorphic crystallization. Ion-exchange reactions involvingsilicates produced the following distribution of Mn: humite group Ca pyroxene.Ca amphibole phlogopite where the numbers are distribution coefficients. An equilibriumdistribution of Fe between silicates and calcite in the minormarble was evidently not attained during metasomatic crystallization.Numerous retrograde reactions have taken place, including thealteration of pyroxene to amphibole, forsterite to serpentine,and the exsolution of dolomite from calcite. Forsterite in marble, and orthopyroxene in the associated gneissesand amphibolites crystallized sporadically in the Laurentianhighlands, but not in the lowlands of the Ottawa rift valley,where peak metamorphic temperatures may have been slightly lower.In the highlands, reactions to produce forsterite and orthopyroxenewere initiated in response to a local increase in temperature,local peculiarities in the chemical composition of amphibole,which produced these minerals, or a local decrease in the activityof CO2 and H2O in the grain-boundary phase.  相似文献   

16.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   

17.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

18.
The natural occurrence of critical assemblages among the phases clinohumite, calcite, dolomite, tremolite, forsterite, diopside, chlorite, and spinel in metamorphosed impure limestones, together with experimental and thermodynamic data, permits the calculation of phase equilibria governing the stability of clinohumite in terms of the variables P, T, and composition of a CO2-H2O-HF fluid. Equilibrium constant expressions are given for 23 equilibria that describe the stable phase relations between the above phases. Pure OH-clinohumite is considered to be metastable at relatively low pressures. The occurrence of clinohumite in natural marbles is the result of nonideal fluorine substitution which increases the stability of clinohumite. The stability field for clinohumite +calcite, governed primarily by the equilibrium 4forsterite+dolomite+H2O = clinohumite+calcite +CO2, expands to more CO2-rich fluid compositions with increasing fluorine contents and decreasing total pressure. The F/(F+OH) ratio of clinohumite coexisting with calcite, dolomite, and forsterite is a sensitive indicator of the composition of the mixedvolatile fluid phase. The thermodynamic model is in good agreement with observed phase relations and can be used to gain useful information concerning the P-T-X fluid conditions responsible for the formation of clinohumite.  相似文献   

19.
Calcite-dolomite geothermometry has been used extensively to determine the temperature attained during regional metamorphism of limestones. Several attempts have been made to apply the technique to carbonatites. Although doubts have been expressed recently about the realiability of the method for limestones, the difficulties inherent in using it to estimate carbonatite magma temperatures are so profound that it is of very little value, and published carbonatite magma temperatures based on the method are dubious. These studies have tended to overlook the fact that the highest temperature that can be obtained by the method is still below the liquidus temperature. They have further tended to overlook the fact that Mg diffusion from calcite into coexisting dolomite continues during sub-solvus cooling and that in carbonatites this diffusion is likely to be far more extensive than in metamorphic marbles because of the ubiquitous presence of an alkali-H2O-CO2-halogen fluid. This diffusion is very variable within single perthitic carbonate grains and from grain to grain. The technique of dissolution of carbonatites in cold dilute HCl leads to difficulties and should be avoided. Electron microprobe analysis can be used only on unexsolved calcite or on calcite that has exsolved only very fine dolomite lamellae. The closest approach to magmatic temperatures is obtained by wet chemical analysis of coarse calcite-dolomite perthites. Published carbonatite magma temperatures based on calcite-dolomite geothermometry are misleadingly low and tend to overemphasize the 300–500 ° C temperature range, whereas evidence is presented for temperatures of about 900 ° C in one Ontario carbonatite. Except in rare cases, calcite-dolomite geothermometry cannot usefully be applied to carbonatites.  相似文献   

20.
Using a marble sample from the central Damara Orogen (South West Africa) the determination of the temperature of metamorphism was undertaken with the help of the dolomite-calcite solvus geothermometer for unmixed magnesian calcite crystals. There is good agreement between the results obtained by electron microprobe analysis and by point count analysis of the surface area of exsolved dolomite grains in magnesian calcite. Accordingly, the temperature reached during metamorphism of the investigated marble occurence, based on the dolomite-calcite solvus determination of Goldsmith and Newton (1969), was 620 ° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号