首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hättestrand, M. & Robertsson, A.‐M. 2010: Weichselian interstadials at Riipiharju, northern Sweden – interpretation of vegetation and climate from fossil and modern pollen records. Boreas, 10.1111/j.1502‐3885.2009.00129.x. ISSN 0300‐9483. The most complete records of Weichselian ice‐free conditions in northern Sweden have been retrieved from kettleholes in the Riipiharju esker. In an earlier study, the Riipiharju I core was described as containing two Weichselian interstadials and Riipiharju was chosen as type site for the second Weichselian interstadial in northern Sweden. Here, we present a palynological investigation of two new sediment cores (Riipiharju II and III) retrieved from Riipiharju. Together, the new cores comprise a late cold part of the first Weichselian interstadial recorded in northeastern Sweden (Tärendö I, earlier correlated with Peräpohjola in Finland) as well as a long sequence of the second Weichselian interstadial (Tärendö II, earlier named Tärendö). The results indicate that the climate during deposition of the Tärendö II sequence was more variable than earlier suggested. According to the present interpretation it was relatively warm in the early part of Tärendö II; thereafter a long cold phase persisted, and finally the climate was warmer again in the late part of Tärendö II. The warm phases are characterized by Betula‐dominant pollen assemblages, while the cold phase is characterized by high percentages of Artemisia and Gramineae pollen. Since there is still no firm chronology established of the interstadials in northeastern Sweden, two possible correlations are discussed; either Tärendö I and II are correlated with Brörup (MIS 5c) and Odderade (MIS 5a), or, perhaps more likely, they are correlated with Odderade and early Middle Weichselian (MIS 3) time.  相似文献   

2.
Lake development at Sokli, northern Finland, is traced through the analysis of diatoms and other siliceous micro-fossils in a 2-meter thick minerogenic, laminated clay-silt deposit dated to the early part of Marine Isotope Stage (MIS) 3. Fluctuating water levels and changes in lake extent depicted by the siliceous micro-fossil record, together with lithology, suggest that an important part of the sediment sequence was deposited in a glacial lake. The proxy-based glacial lake evolution is tested using a Digital Elevation Model and geomorphologic evidence including eskers dated to the early MIS 3 Tulppio Interstadial at Sokli. Despite the apparent ice-dammed nature of the lake, the sediment is relatively rich in fossils and there are limited signs of re-deposition of older fossil material. The siliceous micro-fossil record together with data from other proxies previously analysed in the same sediment samples provides a coherent picture of past environmental changes around the Sokli site. This is most probably due to the sheltered position of the coring-site in a lake embayment. Quantitative climate reconstructions based on the diatom record show mean July air temperatures as high as present-day values at Sokli, and the temperature ranges indicated by the diatom record are in agreement with temperature reconstructions based on chironomids. The position of Sokli in the northeastern portion of the central area of the Scandinavian glaciations and the northern retreat pattern implies that an important part of eastern Fennoscandia was deglaciated during the early MIS 3 warming event.  相似文献   

3.
Helmens, K. F. & Engels, S. 2010: Ice‐free conditions in eastern Fennoscandia during early Marine Isotope Stage 3: lacustrine records. Boreas, 10.1111/j.1502‐3885.2010.00142.x. ISSN 0300‐9483. The traditional notion that Fennoscandia was glaciated throughout Marine Isotope Stages (MIS) 4–2, from c. 70 kyr BP to the deglaciation 15–10 kyr BP ago, has been challenged during the last decade. Recent studies have shown that climate and environmental settings during MIS 3 were more dynamic than previously assumed, and lacustrine sediment bodies indicate open‐water conditions for several sites in eastern Fennoscandia. In this study, three sediment sequences from western, eastern and northeast Finland are compared in detail with respect to their chronology, vegetation reconstruction and climatic inferences. OSL‐dating places the sediments in early MIS 3. Pollen evidence suggests the presence of isolated birch trees and open birch forest close to the retreating ice margin, in contrast to vegetation reconstructions from central Europe, which indicate tree‐less vegetation. Furthermore, reconstructions of climate using transfer functions have yielded surprising results, indicating present‐day summer temperatures in northeast Finland. The combined results suggest ice‐free and warm conditions in major parts of eastern Fennoscandia in early MIS 3, possibly during Greenland Interstadial (GIS) 14 around 53 kyr BP ago.  相似文献   

4.
Only fragmentary biostratigraphical interstadial data exist from northern European high latitudes. The palaeoenvironmental interpretations for the early part of the Last Glaciation in northern Fennoscandia are mainly based on palynological evidence that suggests open birch woodland and a sub-arctic climate. Plant macrofossils from the Sokli sediment sequence in Finnish Lapland provide different evidence of interstadial climate conditions. The assemblage includes several species that currently have considerably more southern distribution ranges. This indicates that ca 100,000 years ago summer temperatures were warmer than today. The mean minimum July temperature may have been as high as 16 °C and the effective temperature sum may have been 1000 in day-degree units (d.d.), the modern values being 13 °C and 650 d.d., respectively. The contemporary astronomical forcing mechanisms may have resulted in a weaker north–south temperature gradient and a longer growing period, creating more favourable climate conditions compared with today.  相似文献   

5.
The Rautuvaara section in northern Finnish Lapland has been widely considered as the stratotype for the northern Fennoscandian late Middle and Late Pleistocene. It exposes four till units interbedded with sorted sediments resting on Precambrian bedrock. In order to shed light on the Scandinavian Ice Sheet (SIS) history and palaeoenvironmental evolution in northern Fennoscandia through time, a chronostratigraphical study was carried out at the Rautuvaara site. The succession was studied using sedimentological methods and different sand‐rich units between till units were dated using the Optical Stimulated Luminescence (OSL) method. The results obtained indicate that the whole sediment succession at Rautuvaara was deposited during the Weichselian Stage and there is no indication of older deposits. The SIS advanced across Finnish Lapland to adjacent areas to the east at least once during the Early Weichselian, twice during the Middle Weichselian (~MIS 4 and MIS 3) and once during the Late Weichselian substages. Glaciolacustrine sediments interbedded between the till units indicate that a glacial lake repeatedly existed after each deglacial phase. The results also suggest that there were two ice‐free intervals in northern Fennoscandia during the Middle Weichselian close to the SIS glaciation centre.  相似文献   

6.
New stratigraphical, palynological and dating evidence is presented for pre‐Late Devensian/Weichselian sediments at Fugla Ness and Sel Ayre, Shetland. The Fugla Ness Peat rests on till and formed during an interglacial that saw the development of maritime heaths, with scattered trees and shrubs, including Pinus and possibly Ilex. A decline into stadial conditions is marked by overlying periglacial breccia and till. The Sel Ayre Organic Sands and Gravels lie between periglacial breccias and beneath till and appear to record a changing interstadial environment in which trees were absent and the vegetation comprised largely heaths, with Bruckenthalia, and grasslands. The Fugla Ness Peat is dated to 110+40/?35 ka by uranium series disequilibrium, suggesting that it formed during the Ipswichian/Eemian Interglacial (Marine Isotope Substage 5e). Luminescence ages of ca. 98–105 ka on intercalated sands within the Sel Ayre Organic Sands and Gravels place these deposits in Marine Isotope Substage 5c (Brørup Interstadial). The two sites provide the first detailed record of Marine Isotope Stage 5 environments on Shetland. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid‐inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ~15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ~1.5°C was inferred from the chironomid record during this regressive phase. The multi‐proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi‐site approach provided insight into the factors influencing the pollen and isotope records from these small‐scale depressions.  相似文献   

8.
A 22 m long sediment core from Lake Yamozero on the Timan Ridge in northern Russia has provided evidence of intriguing climatic shifts during the last glacial cycle. An overall shallowing of the lake is reflected in the lower part of the cores, where pollen indicates a transition from glacial steppe vegetation to interstadial shrub-tundra. These beds are capped by a well-defined layer of compact clay deposited in relatively deep water, where pollen shows surrounding spruce forests and warmer-than-present summer temperatures. The most conservative interpretation is that this unit represents the last interglacial period. However, a series of Optical Stimulated Luminescence (OSL) dates suggests that it corresponds with the Early Weichselian Odderade interstadial (MIS 5a). This would imply that the Odderade interstadial was just as warm as a normal interglacial in this continental part of northern Europe. If correct, then pollen analysis, as a correlation tool, is less straightforward and the definition of an interglacial is more complex than previously thought. We discuss the validity and possible systematic errors of the OSL dates on which this age model is based, but conclude they really indicate a MIS 5a age for the warm period. Above the clay is an unconformity, most likely reflecting a period of subaerial exposure implying dry conditions. Deposition of silt under fluctuating cold climates in the Middle Weichselian continued until a second gap in the record at c . 40 kyr BP. The lake basin started to fill up again around 18 kyr BP.  相似文献   

9.
A 2 m thick laminated lacustrine deposit of silt and clay recovered from the high-latitudinal site at Sokli (northern Finland) provides a unique mid-Weichselian fossil record for Fennoscandia. High-resolution botanical and zoological analyses of the lacustrine deposit allow detailed reconstruction of the regional vegetational development and of the history of the lake and the wetland ecosystem within the Sokli basin during the early part of the Weichselian Middle Pleniglacial (=equivalent to Marine Isotope Stage (MIS) 3). The inferred terrestrial vegetation represented by the Sokli MIS 3 sequence (so-called Tulppio Interstadial) was probably low-arctic tundra, treeless but with shrub elements including juniper, willow, dwarf birch, ericoids, lycopods and a rich herb flora with a variety of arctic–alpine taxa and heliophilous, pioneer elements. The presence of herbs such as Rubus chamaemorus, Epilobium palustre, Potentilla palustris and Sphagnum, Drepanocladus and other mosses suggests that the lake was fringed by wet meadows and peatlands or peaty telmatic communities. The distributional ranges of pine and tree birch were probably only a few hundred kilometres south or southeast of Sokli. This is concordant with evidence for the presence of boreal tree taxa during the MIS 3 in the Baltic countries and further east in Europe, but contradicts with the commonly inferred treeless tundra or grass-dominated steppe conditions in central Europe.  相似文献   

10.
In Ostrobothnia, western Finland, buried fossil soils have been recognised in a number of places in the sandy sediments that occur between glaciofluvial deposits and overlying till. Samples from the soil horizons as well as below and above them were taken for optically stimulated luminescence (OSL) dating. The same sites were also sampled for thermoluminescence (TL) dating. Altogether five TL dates and seventeen OSL dates were obtained. The OSL dates can be grouped into two age classes, (i) 120-163 ka and (ii) 76-106 ka, whereas all TL dates are of the order 135-155 ka. A comparison between the results obtained from the two dating methods shows that OSL dates are generally younger than the TL dates for the same sample. The discrepancy may arise partly from problems of setting a correct residual level in TL dating. If this is the case then the TL dates may indicate an upper limit for the true age. The results support the geological interpretation that the fossil soils were formed during the last interglacial, that the soil-forming processes possibly also continued during the first Early Weichselian stadial and interstadial (Brørup sensu lato), and that in general the till-covered glaciofluvial sequences, interpreted as eskers in Ostrobothnia, were deposited during the Saalian or Early Weichselian deglaciation.  相似文献   

11.
Alexanderson, H., Johnsen, T. & Murray, A. S. 2009: Re‐dating the Pilgrimstad Interstadial with OSL: a warmer climate and a smaller ice sheet during the Swedish Middle Weichselian (MIS 3)? Boreas, 10.1111/j.1502‐3885.2009.00130.x. ISSN 0300‐9483. Pilgrimstad in central Sweden is an important locality for reconstructing environmental changes during the last glacial period (the Weichselian). Its central location has implications for the Scandinavian Ice Sheet as a whole. The site has been assigned an Early Weichselian age (marine isotope stage (MIS) 5 a/c; >74 ka), based on pollen stratigraphic correlations with type sections in continental Europe, but the few absolute dating attempts so far have given uncertain results. We re‐excavated the site and collected 10 samples for optically stimulated luminescence (OSL) dating from mineral‐ and organic‐rich sediments within the new Pilgrimstad section. Single aliquots of quartz were analysed using a post‐IR blue single aliquot regenerative‐dose (SAR) protocol. Dose recovery tests were satisfactory and OSL ages are internally consistent. All, except one from an underlying unit that is older, lie in the range 52–36 ka, which places the interstadial sediments in the Middle Weichselian (MIS 3); this is compatible with existing radiocarbon ages, including two measured with accelerator mass spectrometry (AMS). The mean of the OSL ages is 44±6 ka (n=9). The OSL ages cannot be assigned to the Early Weichselian for all reasonable adjustments to water content estimates and other parameters. The new ages suggest that climate was relatively mild and that the Scandinavian Ice Sheet was absent or restricted to the mountains for at least parts of MIS 3. These results are supported by other recent studies completed in Fennoscandia.  相似文献   

12.
All Known sites with fossils and ‘non-till sediments’ of possible Early and Middle Weichselian age in Norway are discussed. Along the west coast there are many sites marine shells which have been dated by means of radiocarbon, amino acids and thorium/uranium methods. Some sites are also correlated by means of underlying Eemian sequences. A tentative glaciation curve for western Norway indicates a first glacial advance soon after the end of the Eemian. There are indications of another re-advance around 40,000 B.P., and the Late Weichselian maximum (maxima?) occurred somewhere between 30,000 B.P. and 13,000 B.P. Parts of the coast may have been ice-free for most of the remaining periods. From the central parts of the country are known bones (e.g. mammoth), glaciolacustrine and fluvial sediments, peat, etc. The newly discovered site with peat of Brumunddal can very probably be correlated with the Jämtland Interstadial in Sweden, and the Brørup Interstadial in Denmark. If this is correct, nearly the whole of southern Scandinavia must have been deglaciated during the interstadial.  相似文献   

13.
Coring through glaciotectonically stacked Quaternary sediments situated below sea level on the island of Møn, Denmark, recovered a succession of interstadial sediments of Middle Weichselian age. Plant and animal remains including insects found in laminated sand and mud indicate deposition in a lake surrounded by dwarf shrubs, herbs, mosses and rare trees. The insect fauna indicates a mean July temperature of 8–12 °C, suggesting an arctic to sub‐arctic environment, while winter temperatures around ?8 to ?22 °C suggest periglacial conditions with permafrost. Luminescence dating of sediment samples gave ages from 48–29 ka, and radiocarbon dating indicates deposition of plant fragments between 45 and 36 ka BP. The fossil assemblage from Møn shows close resemblance to those from other sites with similar ages found in the vicinity of the western Baltic Basin.  相似文献   

14.
Dramatic changes in European vegetation occurred during the transition from the Eemian interglacial to Weichselian glacial climates, correlative with major changes in global ice core and marine records. Quantitative knowledge of climate change is important for understanding of the climate system and for climate modelling, for which reconstructions of this transitional period are of special interest. However, it has been difficult to quantify the climatic changes involved in the Eemian to Early Weichselian transition from terrestrial archives due to the lack of modern vegetation analogues. To circumvent this problem, we applied a suitable multivariate probabilistic approach to pollen and plant macrofossil assemblages to reconstruct temperature and precipitation for this transition in central Europe. Our reconstructions span the interval from the beginning of the Eemian (Marine Isotope Stage (MIS) 5e) to the Odderade interstadial (MIS 5a). They indicate a relatively stable Eemian, with increasing precipitation reducing the continentality of the climate with time. During the transition from the Eemian to the Herning stadial, mean July and January temperatures decreased by 4 °C and by as much as 20 °C, respectively. Temperatures remained high enough to support forests during the stadials, and we infer that the reconstructed decrease of precipitation below 500 mm per year caused the extirpation of forests during these periods. Thus, we conclude that precipitation, although difficult to reconstruct, is of vital importance for explaining vegetation change during the Eemian and Eemian/Early Weichselian transition.  相似文献   

15.
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high‐resolution chironomid‐inferred mean July temperature reconstruction for Ireland, spanning the late‐glacial and early Holocene (LGIT, 15–10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI‐1a–e. The temperature decrease into the stadial occurs in two stages. This two‐stage drop can also be seen in other late‐glacial chironomid‐inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present‐day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid‐inferred temperature reconstructions, and with the NGRIP oxygen‐isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

17.
Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS 6/5 and MIS 2/1) and during the MIS 4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namely MIS 6, MIS 4 and MIS 2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.  相似文献   

18.
Earlier spring onset and the associated extension of the growing season in high latitudes belong to the most obvious consequences of global warming. The natural dynamics of growing-season properties during past climate shifts however, are extremely difficult to reconstruct since temperature reconstructions are hardly ever seasonally resolved and the applied proxies such as chirinomid or pollen analysis are mainly sensitive to summer temperatures. Here we apply a newly developed leaf cuticle-based proxy to reconstruct growing degree-days (GDD) in a quantitative way and to estimate changes in the timing of spring onset over the last deglaciation. Cuticle analyses of fossil birch leaves preserved in lake sediments from southern Germany reveal extremely low GDD values during the Late Pleniglacial, which are rapidly increasing at the onset of the Bølling/Allerød interstadial. While temperature and GDDs show a simultaneous warming during deglaciation, a GDD decline precedes lowering of summer temperatures during the Older Dryas cooling. Later bud-burst dates support the hypothesis of a shortening the growing season during this cool pulse.  相似文献   

19.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Radiocarbon-dated pollen diagrams from four Danish sequences are presented in their sedimentological context. The pollen diagrams indicate the former presence of stands of Betula and Pinus and of Ericales, Poaceae, Cyperaceae and other herbs. From a straightforward comparison with other diagrams, one of the present series is tentatively correlated with part of the Early Weichselian Brørup Interstadial and two with parts of the Odderade Interstadial, which has not been demonstrated previously in Denmark. One diagram and part of another do not seem to match previously published records in northwest Europe. Yet, the possibility that the sediments date to hitherto unrecorded periods with environmental conditions similar to those reflected in known Weichselian deposits is not excluded. In two of the sequences high percentages of charcoal particles suggest the former occurrence of fires, which influenced the palaeovegetation and soil surface stability. It is suggested that counting of charcoal particles is included in future investigations in order to establish whether periods with fires can be identified in the sedimentary sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号