首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A storm track is a region in which synoptic eddy activities are statistically most prevalent and intense. At daily weather charts, it roughly corresponds to the mean trajectories of cyclones and anticyclones. In this paper, the recent QuikSCAT (Quick Scatterometer) satellite sea winds data with a 0.5°×0.5° horizontal resolution, and the NCEP (National Centers for Environmental Prediction) 10-m height Gaussian grid wind data and pressure-level reanalysis data, are employed to document the spatial structure of the North Pacific storm track in winter (January) and summer (July) from 1999 to 2005. The results show that in winter the North Pacific storm track is stronger, and is located in lower latitudes with a distinct zonal distribution. In summer, it is weaker, and is located in higher latitudes. Based on the horizontal distributions of geopotential height variance at various levels, three-dimensional schematic diagrams of the North Pacific storm track in winter and summer are extracted and presented. Analyses of the QuikSCAT wind data indicate that this dataset can depict the low-level storm track features in detail. The double storm tracks over the Southern Oceans found by Nakamura and Shimpo are confirmed. More significantly, two new pairs of low-level storm tracks over the North Pacific and the North Atlantic are identified by using this high-resolution dataset. The pair over the North Pacific is focused in this paper, and is named as the "subtropical storm track" and the "subpolar storm track", respectively. Moreover, statistical analyses of cyclone and anticyclone trajectories in the winters of 1999 to 2005 reveal as well the existence of the low-level double storm tracks over the North Pacific.  相似文献   

2.
北太平洋风暴轴的三维空间结构   总被引:9,自引:1,他引:8  
傅刚  毕玮  郭敬天 《气象学报》2009,67(2):189-200
文中利用最新的0.5°×0.5°分辨率QuikSCAT(QuikBird Satellite Microwave Scatterometer Sea Winds Data)海面风场资料、NCEP(National Center for Environmental Prediction)的10 m高度风场资料和全球客观再分析资料,对1999-2005年冬季(1月)和夏季(7月)北太平洋风暴轴的三维空间结构进行了分析,发现冬季北太平洋风暴轴的强度较强,呈明显的纬向拉伸带状分布特征,位置偏南.夏季北太平洋风暴轴的强度较弱,位置偏北.根据不同高度上位势高度方差的水平分布特征,绘制了北太平洋风暴轴的三维结构示意图.利用高分辨率QuikSCAT资料对风暴轴特征的刻画更为细致,不但验证了Nakamu-ra在南大洋发现的双风暴轴现象,而且还发现在北太平洋和北大西洋下层分别存在"副热带风暴轴"和"副极地风暴轴"两个风暴轴.对1999-2005年冬季北太平洋气旋和反气旋的移动路径进行的统计分析,为北太平洋"双风暴轴"的存在提供了强有力的证据.  相似文献   

3.
利用NCEP/NCAR提供的再分析资料和NOAA提供的海温资料分析太平洋年代际振荡(Pacific Decadal Oscillation,PDO)不同位相的年代际背景下北半球海气耦合关系的异常与风暴轴协同变化的联系,主要结果如下:1)冬季太平洋年代际振荡与北半球两大洋风暴轴协同变化之间存在显著的相关关系,当PDO暖位相时,对应两大洋风暴轴南北位置反向的异常变化,其中北太平洋风暴轴偏南且中东部减弱,北大西洋风暴轴偏北且中东部增强,PDO冷位相时相反。2)PDO为暖位相时,对应El Niňo型海温异常,北大西洋海温呈三极型,平均槽脊加强,经向环流增强,极涡收缩,北太平洋风暴轴南压,大西洋风暴轴则北抬,此时欧亚大陆北部和北美大陆大部分地区温度异常升高,亚洲南部、非洲北部及巴伦支海以北的高纬温度异常降低,北美西南部和格陵兰岛附近温度也为异常降低,PDO冷位相时相反。  相似文献   

4.
Summary Extended integrations of semi-Lagrangian and Eulerian shallow water primitive equation models are performed. The semi-Lagrangian model used the semi-implicit two-time-level scheme. The Eulerian model used a conserving nonlinear advection scheme.For low resolution and longer integrations, difficulties were encountered with the semi-Lagrangian model which were absent in the Eulerian model. These difficulties are discussed.With 14 Figures  相似文献   

5.
Synoptic atmospheric eddies are affected by lower tropospheric air-temperature gradients and by turbulent heat fluxes from the surface. In this study we examine how ocean fronts affect these quantities and hence the storm tracks. We focus on two midlatitude regions where ocean fronts lie close to the storm tracks: the north-west Atlantic and the Southern Ocean. An atmospheric climate model of reasonably high resolution (~50 km) is applied in a climate-length (60 year) simulation in order to obtain stable statistics. Simulations with frontal structure in the sea surface temperature (SST) in one of the regions are compared against simulations with globally smoothed SST. We show that in both regions the ocean fronts have a strong influence on the transient eddy heat and moisture fluxes, not just in the boundary layer, but also in the free troposphere. Local differences in these quantities between the simulations reach 20–40 % of the maximum values in the simulation with smoothed SST. Averaged over the entire region of the storm track over the ocean the corresponding differences are 10–20 %. The effect on the transient eddy meridional wind variance is strong in the boundary layer but relatively weak above that. The potential mechanisms by which the ocean fronts influence the storm tracks are discussed, and our results are compared against previous studies with regional models, Aquaplanet models, and coarse resolution coupled models.  相似文献   

6.
冬季北太平洋风暴轴的年代际变化特征及其可能影响机制   总被引:12,自引:0,他引:12  
朱伟军  李莹 《气象学报》2010,68(4):477-486
利用1958-2002年的ERA-40再分析资料,用谐波变换和EOF方法分析了冬季北太平洋风暴轴在年代际时间尺度上的变化特征,并通过回归分析的方法初步探讨了风暴轴年代际变化的可能影响机制.结果表明,在年代际时间尺度上,北太平洋风暴轴有两种主要模态,第1模态是风暴轴在其气候平均位置增强或减弱的主体一致变化型,其年代际变化受到上游涡旋强迫的影响,北大西洋强(弱)的涡旋活动,使得冬季北太平洋西风急流减弱(增强)、变宽(窄)、北抬(南压),同期北太平洋风暴轴活动偏强(弱),黑潮延续体区海表温度有偏暖(冷)的响应;第2模态是风暴轴中东部在气候平均位置南北两侧振荡的经向异常型,与太平洋年代际振荡(PDO)循环的暖(冷)位相相联系,下垫面海温非绝热加热的作用,激发加强(减弱)大气中类太平洋/北美遥相关型(PNA)的响应,引起大气斜压性异常偏南(北),使得风暴轴整体南压(北抬),且中东部向东南(北)方向移动.因此,冬季北太平洋风暴轴的年代际变化不仅是局地波-流相互作用的结果,还应考虑上游涡旋活动和海温热力强迫的作用.  相似文献   

7.
Changes of Air–sea Coupling in the North Atlantic over the 20th Century   总被引:1,自引:0,他引:1  
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.  相似文献   

8.
The atmospheric circulation response to decadal fluctuations of the Atlantic meridional overturning circulation (MOC) in the IPSL climate model is investigated using the associated sea surface temperature signature. A SST anomaly is prescribed in sensitivity experiments with the atmospheric component of the IPSL model coupled to a slab ocean. The prescribed SST anomaly in the North Atlantic is the surface signature of the MOC influence on the atmosphere detected in the coupled simulation. It follows a maximum of the MOC by a few years and resembles the model Atlantic multidecadal oscillation. It is mainly characterized by a warming of the North Atlantic south of Iceland, and a cooling of the Nordic Seas. There are substantial seasonal variations in the geopotential height response to the prescribed SST anomaly, with an East Atlantic Pattern-like response in summer and a North Atlantic oscillation-like signal in winter. In summer, the response of the atmosphere is global in scale, resembling the climatic impact detected in the coupled simulation, albeit with a weaker amplitude. The zonally asymmetric or eddy part of the response is characterized by a trough over warm SST associated with changes in the stationary waves. A diagnostic analysis with daily data emphasizes the role of transient-eddy forcing in shaping and maintaining the equilibrium response. We show that in response to an intensified MOC, the North Atlantic storm tracks are enhanced and shifted northward during summer, consistent with a strengthening of the westerlies. However the anomalous response is weak, which suggests a statistically significant but rather modest influence of the extratropical SST on the atmosphere. The winter response to the MOC-induced North Atlantic warming is an intensification of the subtropical jet and a southward shift of the Atlantic storm track activity, resulting in an equatorward shift of the polar jet. Although the SST anomaly is only prescribed in the Atlantic ocean, significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere.  相似文献   

9.
A statistical technique is used to analyze the relation between monthly mean zonal flow and storm tracks activity in the observations and numerical simulations (ECHAM4 model). The singular value decomposition technique (SVD) has been used to correlate storm tracks and monthly mean wintertime anomaly fields. The analysis has been performed on data from January 1980 to December 1989 (NMC analyses) and on an ensemble of AGCM simulations with prescribed SST for the same period, separately in the Euro-Atlantic and Pacific sectors. We found good correlation between storm tracks activity and zonal flow in both regions. In both data and simulations the dominant SVD modes show that the storm tracks spatial displacement is in conjunction with jet shifts in the same direction. Our analysis suggests that the model is highly sensitive to the equatorial ocean forcing. Although the model produces an excessive response to El Niño and La Niña phases, it shows good capability of simulating the dynamical connection between storm tracks and jet.  相似文献   

10.
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Ni?o-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.  相似文献   

11.
Blocking is a major component of the extratropical climate and any changes in it would be a very important aspect of climate change there. Previous studies have shown that mid-latitude variability such as blocking is sensitive to tropical sea surface temperature (SST) anomalies and to variations in tropical precipitation. Climate models exhibit a wide range of skill in representing blocking, with all models having deficiencies in certain respects. In addition, coupled climate models often exhibit significant biases in both tropical precipitation and tropical and extratropical SSTs. This suggests that tropical systematic biases in coupled climate models may influence the representation of blocking and its sensitivity to climate change. We examine the relationship between winter north Pacific blocking and tropical precipitation and tropical SSTs through the use of idealised SST anomaly experiments. We find that interannual variations in convection over the Maritime Continent and eastern equatorial Pacific regions both influence the central and eastern Pacific winter blocking frequency. In addition, systematic underestimation of tropical rainfall over the Maritime Continent region in climate models can lead to underestimation of time-mean winter Pacific blocking. Finally, the sign, magnitude and variability of tropical SST biases in a coupled model, and their associated effects on tropical precipitation, could influence its representation of northern hemisphere blocking, and thus affect its ability to represent this mode of remotely-forced mid-latitude variability. These results have important implications for model development.  相似文献   

12.
北半球风暴轴的时间演变特征   总被引:16,自引:2,他引:16  
对500hPa位势高度场逐日资料进行带通滤波分析,从而确定了风暴轴各月平均的强度和位置,分析了风暴轴和同一层次急流的时间演变特征以及它们之间的关系。结果表明:太平洋和大西洋风暴轴的强度和摆动都存在着明显的月际变化,即夏季强度最弱,位置偏北;冬季强度最强,位置偏南。在大多数情况下,风暴轴位于急流极大值下游向极地一侧。还发现,急流核和风暴轴都存在断裂现象,在太平洋上,风暴轴还出现双中心现象。  相似文献   

13.
An abrupt change in the large-scale boreal winter circulation pattern over the North Pacific was observed during the mid-1970s. Most notably, this change was marked by a southward shift and intensification of the Aleutian Low and prevailing westerlies over the mid-latitude central and eastern Pacific. Associated changes in diverse North Pacific climatological, hydrological, and biological variables have been noted by numerous researchers. Intriguingly, the timing of these changes in the extra-tropical circulation was coincident with a shift in the background state of the coupled ocean-atmosphere system over the tropical Pacific. These changes include increases in SST over broad regions of the central and eastern tropical Pacific and an eastward displacement of the region of persistent convection in the western Pacific. This paper presents a variety of observed data and model results to describe the climate shift, and to understand some of the links within the coupled climate system that produced it. Five main findings are emphasized: (1) evidence of abrupt, simultaneous, and apparently related changes can be found in many fields and in many model results; the climate shift is not an artifact, (2) over the tropical Pacific the climate change represents a shift in the state of the coupled ocean-atmosphere system, some aspects of which resemble features associated with El Niño episodes. However, the shift in state is not well characterized as due to a change in the frequency of intensity of El Ni~no episodes; it is better described as a change in background mean state, (3) when forced with observed SSTs, both a very simple atmospheric model and a full general circulation model (GCM) qualitatively simulate aspects of the decadal-scale shift over the tropical Pacific, (4) when forced with observed surface wind stress, two ocean models of the tropical Pacific, in which surface heat fluxes are parameterized as Newtonian damping, reproduce some aspects of the near-equatorial decadal SST signal. However, the models do not reproduce the large changes in SST observed at higher latitudes of the tropical Pacific, suggesting that altered surface heat fluxes dominated in producing these changes, and (5) an important new finding of this study is the success of a GCM in reproducing important aspects of the observed mid-1970s shift in winter northern hemisphere circulation. Comparative analyses of the observed and GCM simulated circulation suggest the altered patterns of tropical Pacific SST and convection were important in forcing the changes in the mid-latitude circulation, a finding corroborated by recent GCM experiments.  相似文献   

14.
利用NCEP/NCAR再分析资料,对1948/1949-1999/2000共52个冬季的北太平洋上空中纬度阻塞异常的气修特征进行了统计分析,小波分析和功率谱分析结果表明该区域阻塞发生的频数具有很明显的3-7年的年际振荡和年代际变化特征。同时2-7年带通平均的小波方差谱分析结果表明阻塞的这种年际变化的振幅存在着缓慢下降的趋势,且气候突变在20世纪70年代,这进一步证明了北太平洋上空的阻塞活动具有年代际变化特征。对强阻塞异常的冬季和弱阻塞异常的冬季分别进行合成分析,结果表明,对于阻塞异常强的冬季,北太平洋西向东北方向加强并分裂成两个中心,而SST异常在中纬度太平洋则对应着典型的PDO型,在赤道地区则为类La Nina型的海温分布。而对于阻塞异常弱的冬季则对应截然不同甚至相反的分布特征,即500hPa高度异常场表现为符号相反的PNA型,风暴路径中心在日界线附近呈纬向型分布。同时SST异常在赤道地区则为典型的El Nino型的海温分布。以上结果揭示出北太平洋阻塞活动的年际变化可能主要与热带海温的遥响应相联系,而年代际变化则主要与中纬度局地的PDO型海温及其通过斜压瞬变波的海-气相互作用有关。  相似文献   

15.
The effect of CO2-induced climate change on the North Atlantic storm and cyclone tracks in winter is analysed using time slice experiments of the Hamburg atmospheric general circulation model (ECHAM3) with triangular truncation at wave number 42 (T42) and 19 levels. The sea surface temperature (SST) and sea ice boundary conditions for these experiments are taken from a transient Intergovernmental Panel on Climate Change (IPCC) scenario A run of ECHAM1/LSG at the times where the 1×CO2 (control run), the 2×CO2 and the 3×CO2 concentrations are reached. Using a cyclone identification and tracking scheme, we detect the low pressure systems as relative minima in the 1000 hPa geopotential height field and connect them to cyclone tracks. The results of the Eulerian analysis of the storm track using filtered variances and the Lagrangian analysis of the cyclone trajectories from the three climate runs are discussed and compared with each other. In the 2×CO2 experiment, the storm track shifts eastward, whereas the cyclone density shifts northeastward. In the 3×CO2 experiment the storm track shows a southeastward shift, whereas the cyclone density shifts northward. The variability of the cyclone tracks is determined by a cluster analysis of their relative trajectories considering the first three days of the cyclones. The relative cyclone tracks are grouped into stationary, zonal and northeastward travelling cyclones. This analysis provides a method to assess the model quality and to detect changes of the cyclone trajectories in different climates. In the 2×CO2 (but not in the 3×CO2) run the occupation number of northeastward cyclones increases. Received: 27 January 1998 / Accepted: 19 May 1998  相似文献   

16.
海温异常对台风形成的影响   总被引:13,自引:0,他引:13  
吴国雄 《大气科学》1992,16(3):322-332
本文利用地球流体力学实验室(GFDL)的低分辨气候模式进行数值试验,以研究海温异常对台风形成的影响.试验采用恒定8月气候条件和海表温度(SST).海温异常(SSTA)被置于北太平洋不同区域.结果表明,台风生成频率在暖SSTA区明显增加.这是由于暖SSTA区低层辐合的增强一方面使低空气旋式环流和高空反气旋式环流加大,另一方面导致低层水汽向该区辐合,使潜热释放加强,对流加剧所致.此一机制被用于解释台风频率和ENSO事件的相关.在冷ENSO年份,西北和西南太平洋台风增多不仅是由于赤道东太平洋SST异常冷,还与西太平洋SST异常暖有关.  相似文献   

17.
The extra-tropical response to El Niño in a “low” horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Niño. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Niño in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes.  相似文献   

18.
The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden–Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model.  相似文献   

19.
The Southern Oscillation is a major component in the interannual variations of global climate. The Oregon State University global climate model, with a dynamically interactive upper ocean, reproduces in qualitatively correct fashion some of the major characteristics of the Southern Oscillation. This model simulates the observed anti-correlation of annually averaged sea-level pressure (SLP) between the eastern Pacific and the Indonesian region, the primary atmospheric signal of the Southern Oscillation. In the composite of the simulated warm events positive sea-surface temperature (SST) anomalies expand eastward towards South America from the tropical western Pacific during the first half of the calendar year. The SST anomalies develop in conjunction with eastward mixed layer current anomalies in the tropical Pacific. In the late summer and early fall anomalously warm water near South America develops and moves westward to merge with the central Pacific anomalies. This lagged development in the eastern Pacific is analogous to the evolution of the 1982/83 and 1986/87 El Ninos. The temperature of the thermocline layer also increases, with the slope of the equatorial Pacific thermocline decreasing in response to the relaxation of the surface forcing. Enhanced precipitation occurs in the mid-Pacific while in the Indian and Australian monsoon regions a deficit occurs. The peak of the warm phase occurs in late northern fall/early winter, somewhat earlier than during observed El Ninos. The cold phase of the Southern Oscillation, enhancement of the zonal circulation, evolves in a fashion similar to the warm phase with the signs of the anomalies reversed, similar to observations. Occurrence of Southern Oscillation in this coarse resolution GCM indicates that high resolution ocean waves do not play a crucial role in the generation of this phenomenon as suggested by Pacific basin models. These results also show that ocean-atmosphere global climate models are useful tools for investigation of time dependent changes on the interannual timescale in addition to their hitherto accepted use for studying equilibrium properties of climate.  相似文献   

20.
ENSO事件对中国气候的可能影响   总被引:8,自引:0,他引:8  
利用 1 95 1 -1 998年的北太平洋海温和中国的温度、降水月平均资料 ,分析了ENSO事件对中国夏季主要雨带、长江中下游梅雨、华北雨季和中国秋冬季降水、温度、台风之间的可能影响 ,结果表明ENSO事件是影响中国气候的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号