首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

2.
Accuracy of cosmogenic ages for moraines   总被引:1,自引:0,他引:1  
Analyses of all published cosmogenic exposure ages for moraine boulders show an average age range of 38% between the oldest and youngest boulders from each moraine. This range conflicts with the common assumption that ages of surface boulders are the same as the age of the landform. The wide spread in boulder ages is caused by erosion of the moraine surface and consequent exhumation of fresh boulders. A diffusion model of surface degradation explains the age range and shows that a randomly sampled small set of boulders (n = 3-7) will always yield a lower age limit for the moraine. The model indicates that for identical dating accuracy, six to seven boulders are needed from old and tall moraines (40,000-100,000 yr, 50-100 m initial height) but only one to four boulders from small moraines (20,000-100,000 yr, 10-20 m). By following these guidelines the oldest obtained boulder age will be ≥90% of the moraine age (95% probability). This result is only weakly sensitive to a broad range of soil erosion rates. Our analysis of published boulder ages indicates that <3% of all moraine boulders have prior exposure, and 85% of these boulders predate the dated moraine.  相似文献   

3.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

4.
Egesen moraines throughout the Alps mark a glacial advance that has been correlated with the Younger Dryas cold period. Using the surface exposure dating method, in particular the measurement of the cosmogenic nuclide 10Be in rock surfaces, we attained four ages for boulders on a prominent Egesen moraine of Great Aletsch Glacier, in the western Swiss Alps. The 10Be dates range from 10 460±1100 to 9040±1020 yr ago. Three 10Be dates between 9630±810 and 9040±1020 yr ago are based upon samples from the surfaces of granite boulders. Two 10Be dates, 10 460±1100 and 9910±970 yr ago, are based upon a sample from a quartz vein at the surface of a schist boulder. In consideration of the numerous factors that can influence apparently young 10Be dates and the scatter within the data, we interpret the weighted mean of four boulder ages, 9640±430 yr (including the weighted mean of two 10Be dates of the quartz vein), as a minimum age of deposition of the moraine. All 10Be dates from the Great Aletsch Glacier Egesen moraine are consistent with radiocarbon dates of nearby bog‐bottom organic sediments, which provide minimum ages of deglaciation from the moraine. The 10Be dates from boulders on the Great Aletsch Glacier Egesen moraine also are similar to 10Be dates from Egesen moraines of Vadret Lagrev Glacier on Julier Pass, in the eastern Swiss Alps. Both the morphology of the Great Aletsch Glacier Egesen moraine and the comparison with 10Be dates from the inner Vadret Lagrev Egesen moraine support the hypothesis that the climatic cooling that occurred during the Younger Dryas cold episode influenced the glacial advance that deposited the Great Aletsch Glacier Egesen moraine. Because of the large size and slow response time of Great Aletsch Glacier, we suggest that the Great Aletsch Glacier Egesen moraine was formed during the last glacial advance of the multiphased Egesen cold period, the Kromer stage, during the Preboreal chron. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.  相似文献   

6.
The statistical distributions of cosmogenic nuclide measurements from moraine boulders contain previously unused information on moraine ages, and they help determine whether moraine degradation or inheritance is more important on individual moraines. Here, we present a method for extracting this information by fitting geomorphic process models to observed exposure ages from single moraines. We also apply this method to 94 10Be apparent exposure ages from 11 moraines reported in four published studies. Our models represent 10Be accumulation in boulders that are exhumed over time by slope processes (moraine degradation), and the delivery of boulders with preexisting 10Be inventories to moraines (inheritance). For now, we neglect boulder erosion and snow cover, which are likely second-order processes. Given a highly scattered data set, we establish which model yields the better fit to the data, and estimate the age of the moraine from the better model fit. The process represented by the better-fitting model is probably responsible for most of the scatter among the apparent ages. Our methods should help resolve controversies in exposure dating; we reexamine the conclusions from two published studies based on our model fits.  相似文献   

7.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

8.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

9.
Cosmogenic-nuclide exposure ages for 13 glacially transported boulders atop the Martha's Vineyard moraine, MA, USA, indicate that the southeastern margin of the Laurentide ice sheet reached its maximum extent during the last glaciation 23,200±500 yr ago. Another 10 age determinations from the younger Buzzards Bay moraine near Woods Hole, MA, indicate that this moraine complex was formed 18,800±400 yr ago. These ages correlate approximately with the terminations of cooling cycles recorded in Greenland ice cores and coeval ice-rafting events, suggesting that the marginal position of this sector of the ice sheet was tightly coupled to North Atlantic climate during the last glacial maximum.  相似文献   

10.
New cosmogenic surface-exposure ages of moraine-crest boulders from southwestern Colorado are compared with published surface-exposure ages of boulders from moraine complexes in north-central Colorado and in west-central (Fremont Lake basin) Wyoming. 10Be data sets from the three areas were scaled to a single 10Be production rate of 5.4 at/g/yr at sea level and high latitude (SLHL), which represents the average 10Be production rate for two high-altitude, mid-latitude sites in the western United States (US) and Austria. Multiple nuclide ages on single boulders indicate that this 10Be production rate yields ages comparable to those calculated with a commonly used 36Cl production scheme. The average age and age range of moraine-crest boulders on terminal moraines at the southwestern Colorado and Wyoming sites are similar, indicating a retreat from their positions ∼16.8 36Cl ka (Cosmogenic ages in this paper are labeled 10Be or 36Cl ka or just ka when both 10Be or 36Cl ages are being discussed; radiocarbon ages are labeled 14C ka, calibrated radiocarbon are labeled cal ka, and calendar ages are labeled calendar ka. Errors (±1σ) associated with ages are shown in tables. Radiocarbon ages were calibrated using the data of Hughen et al. (Science 303 (2004) 202). This suggests a near-synchronous retreat of Pinedale glaciers across a 470-km latitudinal range in the Middle and Southern Rocky Mountains. Hypothetical corrections for snow shielding and rock-surface erosion shifts the time of retreat to between 17.2 and 17.5 10Be ka at Pinedale, Wyoming, and between 16.3 and 17.3 36Cl ka at Hogback Mountain, Colorado.  相似文献   

11.
The Yulong Mountain massif is tectonically active during Quaternary and contains the southernmost glacierized mountains in China, and all of Eurasia. Past glacial remnants remain preserved on the east and west sides of the Yulong Mountains. A ridge of moraine protruded into the Jinsha River at the Daju Basin, damming the river, and forming a lake at the head of the Jinsha River. Cosmogenic 10Be and 26Al provide exposure age dates for the moraine-based fluvial terraces left behind after the dam breached, and for moraine boulders on both the eastern and western sides of the Yulong Mountains. Our results yield exposure ages for the terraces that range from 29 ka to 8 ka, and a downcutting rate of 7.6 m/ka. The preservation of the remaining dam for over 10,000 years suggests stability of the moraine dam and gradual erosion of the dam during drainage of the dammed lake. From the relationship between exposure ages and elevations of the fluvial terraces located in different walls of the Daju fault, we obtain a late Quaternary dip-slip rate of about 5.6 m/ka for the Daju fault. The exposure ages of 10.2 ka and 47 ka for moraine boulders located in the east and west sides of the Yulong Mountains, respectively, coincide with warm periods in the late Quaternary. This implies that precipitation provides the major control for glaciations on the Yulong Mountains, a domain of the southwest Asian monsoon.  相似文献   

12.
This contribution provides new constraints on the timing of Tibetan glacial recessions recorded by the abandonment of moraines. We present cosmogenic radionuclide 10Be inventories at 17 sites in southern and western Tibet (32 crests, 249 samples) and infer the range of permissible emplacement ages based on these analyses. Individual large embedded rock and boulder samples were collected from the crests of moraine surfaces and analyzed for 10Be abundance. We consider two scenarios to interpret the age of glacial recession leading to the moraine surface formation from these sample exposure ages: 1) Erosion of the moraine surface is insignificant and so the emplacement age of the moraines is reflected by the mean sample age; and 2) Erosion progressively exposes large boulders with little prior exposure, and so the oldest sample age records the minimum moraine emplacement age. We found that depending on the scenario chosen, the moraine emplacement age can vary by > 50% for ~100 ka-old samples. We consider two scaling models for estimating the production rates of 10Be in Tibet, which has an important, although lesser, effect on inferred moraine ages. While the data presented herein effectively increase the database of sample exposure ages from Tibet by ~20%, we find that uncertainties related to the interpretation of the 10Be abundance within individual samples in terms of moraine emplacement ages are sufficient to accommodate either a view in which glacial advances are associated with temperature minima or precipitation maxima that are recorded by independent paleoclimate proxies. A reanalysis of published data from moraines throughout Tibet shows that the variation we observe is not unique to our dataset but rather is a robust feature of the Tibetan moraine age database. Thus, when viewed in a similar way with other samples collected from this area, uncertainties within moraine exposure ages obscure attribution of Tibetan glacial advances to temperature minima or precipitation maxima. Our work suggests that more reliable chronologies of Tibetan glaciations will come from improvements in production rate models for this portion of the world, as well as a better understanding of the processes that form and modify these geomorphic surfaces.  相似文献   

13.
At several times during the Quaternary, a major eastward-flowing outlet glacier of the former Patagonian Ice Sheet occupied the Lago San Martin Valley in Argentina (49°S, 72°W). We present a glacial chronology for the valley based on geomorphological mapping and cosmogenic nuclide (10Be) exposure ages (n = 10) of boulders on moraines and lake shorelines. There are five prominent moraine belts in the Lago San Martin Valley, associated with extensive sandar (glaciofluvial outwash plains) and former lake shorelines. Cosmogenic nuclide exposure ages for boulders on these moraines indicate that they formed at 14.3 ± 1.7 ka, 22.4 ± 2.3 ka, 34.4 ± 3.4 ka to 37.6 ± 3.4 ka (and possibly 60 ± 3.5 ka), and 99 ± 11 ka (1σ). These dated glacier advances differ from published chronologies from the Lago San Martin Valley based on 14C age determinations from organic sediments and molluscs in meltwater channels directly in front of moraines or in kettleholes within end moraine ridges. The moraine boulder ages also point to possible pre-LGM glacial advances during the last glacial cycle and a key observation from our data is that the LGM glaciers were probably less extensive in the Lago San Martin Valley than previously thought.  相似文献   

14.
On 12 September AD 1717, a rock volume larger than 10 million m3 collapsed onto the Triolet Glacier, mobilized a mass composed of ice and sediment and travelled more than 7 km downvalley in the upper Ferret Valley, Mont Blanc Massif (Italy). This rock avalanche destroyed two small settlements, causing seven casualties and loss of livestock. No detailed maps were made at the time. Later investigators attributed accumulations of granitic boulders and irregular ridges on the upper valley floor to either glacial deposition, or the AD 1717 rock avalanche, or a complex mixture of glacial deposition, earlier rock avalanche and AD 1717 rock avalanche origin. In this study, we present cosmogenic 10Be exposure ages from nine boulders in the extensive chaotic boulder deposit with irregular ridges, two from Holocene glacier‐free areas, and one from a Little Ice Age moraine. Exposure ages between 330 ± 23 and 483 ± 123 a from eight of nine boulders from the chaotic deposit indicate that at least seven were deposited by the AD 1717 rock avalanche. The other three boulders yielded 10Be exposure ages of 10 900 ± 400, 9700 ± 400 and 244 ± 97 a, respectively. Our results are in good agreement with the existing chronology from dendrochronology and lichenometry, and radiocarbon analysis of wood samples, but not with older 14C ages from a peat bog in the upper part of the valley. Based on the new age control, the rock avalanche deposits cover the whole bottom of the upper Ferret valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Moraines southwest of Lake Yashilkul, Pamir, Tajikistan, were dated using 10Be exposure ages of boulder surfaces. We found evidence for (1) an extensive glaciation ∼60,000 yr ago; (2) a less extensive glacial advance, which deposited a characteristic hummocky moraine lobe with exposure ages ranging from ∼11,000 to 47,000 yr, probably deposited at or before 47,000 yr ago; and (3) lateral moraines with exposure ages of ∼40,000 yr, 27,000 yr and 19,000 yr, respectively. Increasing aridity in the Pamir is most likely responsible for the progressively limited extent of the glaciers during the Late Pleistocene.  相似文献   

16.
New radiocarbon ages for Sierra Nevada deglaciation, the first 10 Be measurements from the Laurentide terminal moraine, and calculations based on paleomagnetic field strength have the potential to substantially improve the accuracy of cosmogenic age estimates. Specifically, three new constraints apply to the interpretation of measured abundances of in situ produced cosmogenic 10Be and 26Al: (1) A suite of minimum-limiting radiocarbon dates indicates that the Sierra Nevada was deglaciated at least several thousand years earlier than assumed when Nishiizumi et al. (1989) first calibrated 10Be and 26 Al production rates based on polished bedrock surfaces in the range, with retreat beginning by 18,000 cal yr B.P. and completed by 13,000 cal yr B.P. (2) Concentrations of 10Be in moraine boulders and glacier-polished bedrock in New Jersey show little variance (10%, 1σ) and can be used to calculate a preliminary 10Be production rate (integrated over the past 21,000-22,000 cal yr B.P. at 41°, 200-300 m altitude) that is about 20% lower than currently accepted. (3) Calculations of the effect of past geomagnetic field-strength variations on production rates suggest that the use of temporally averaged production rates may generate age errors of >20%; however, cosmogenic exposure ages can be corrected for this effect, although the corrections currently are imprecise. Many previously reported late-Pleistocene 10Be and 26Al exposure ages are probably too young and are less accurate and less precise than implied by reported uncertainties. The discrepancy between accepted production rates and those calculated from Laurentide exposures, when considered together with the Sierran deglacial chronology and the model results, suggest that correlations between cosmogenic and other numerical ages, especially for brief events like the Younger Dryas and Heinrich events, will not be robust until temporal variations and the altitude/latitude scaling of production rates are fully understood and quantified at levels comparable to current analytic uncertainties (3%).  相似文献   

17.
At Lago Buenos Aires, Argentina, 10Be, 26Al, and 40Ar/39Ar ages range from 190,000 to 109,000 yr for two moraines deposited prior to the last glaciation, 23,000–16,000 yr ago. Two approaches, maximum boulder ages assuming no erosion, and the average age of all boulders and an erosion rate of 1.4 mm/103 yr, both yield a common estimate age of 150,000–140,000 yr for the two moraines. The erosion rate estimate derives from 10Be and 26Al concentrations in old erratics, deposited on moraines that are >760,000 yr old on the basis of interbedded 40Ar/39Ar dated lavas. The new cosmogenic ages indicate that a major glaciation during marine oxygen isotope stage 6 occurred in the mid-latitude Andes. The next five youngest moraines correspond to stage 2. There is no preserved record of a glacial advance during stage 4. The distribution of dated boulders and their ages suggest that at least one major glaciation occurred between 760,000 and >200,000 yr ago. The mid-latitude Patagonian glacial record, which is well preserved because of low erosion rates, indicates that during the last two glacial cycles major glaciations in the southern Andes have been in phase with growth and decay of Northern Hemisphere ice sheets, especially at the 100,000 yr periodicity. Thus, glacial maxima are global in nature and are ultimately paced by small changes in Northern Hemisphere insolation.  相似文献   

18.
The Ivrea amphitheatre (IA) in NW Italy has been studied since 1850, on pedostratigraphic and morphological bases. Three stratigraphic groups of glacial sediments were distinguished. Newly recognized stratigraphic boundaries are based on interstadial/interglacial units, palaeosols and lacustrine organic layers interbedded with glacigenic deposits, and on pedostratigraphy. Mapping of morphological features and associated marginal and sub-glacial deposit facies was used to characterize and reconstruct glacial margin fluctuations. Based on the field evidence, the stratigraphical limits recognized at single sites can be interpolated over the whole amphitheatre. Ten stratigraphic units (referred to as alloformations: Afs) were distinguished and mapped. They are related to at least as many glacial episodes ranging in age from the end of the Early Pleistocene to the Late Pleistocene. The youngest three glacial units (Serra Af, Piverone Af and Ivrea Af) and one interstadial level (Alice Superiore Unit between Serra and Piverone Afs) are discussed in detail. Based on biostratigraphical and pedological, as well as sedimentological and morphological data, the Serra Af can be attributed to MIS 6 and Piverone Af to MIS 4. The 10Be surface exposure ages from two boulders (27.9±3.1, 32.4±4.0 kyr) on the Serra d’Ivrea moraine provide only a minimum age for moraine construction. The alignment of typical ice marginal landforms (moraines and kame terraces) for the more recent unit (Ivrea Af) has allowed recognition of 12 principal stadials during the LGM and Lateglacial; 6 stadials in the amphitheatre and 6 stadials in Dora Baltea Valley, and reconstruction of the nature of the last glacial retreat from the amphitheatre to the cirques. 10Be exposure ages from three boulders related to Ivrea Af are 13.1±1.0, 17.4±2.6 and 20.8±1.5 ka. The latter two ages indicate that the Dora Baltea Glacier deposited the Ivrea Af in the IA during MIS 2. The 10Be exposure ages of 14.6±1.2 and 14.0±0.9 ka from a polished bedrock surface some 15 km upstream from the amphitheatre provide a minimum age for ice decay.  相似文献   

19.
Randomisation tests on boulder weathering data distinguish moraines of four different ages in the Rongbuk Valley, all deposited by valley glaciers flowing northward into Tibet from the Himalaya. Lichenometry utilising subgenus Rhizocarpon distinguishes two groups of moraines, those <100 yr old and those older than several thousand years. The degree of soil development has a similar, limited utility in relative-age dating these moraines. The radiocarbon ages of calcium carbonate coatings in the lower horizons of moraine soils provide minimum-limiting ages of 1900 yr BP for the penultimate advance of the Rongbuk glacier (Samdopo moraine) and 9500 yr BP for the Rongbuk moraine, the moraine suggested by previous workers to represent the last glacial maximum. Equilibrium-line depression associated with the Rongbuk moraine probably was slight, <200 m. The small magnitude of this depression relative to glaciers in other mountain ranges could relate to a weakening of the monsoon in full glacial times, recent tectonic uplift, and/or to the insensitivity of these high-altitude glaciers to lowering temperatures in the rain shadow of Mount Everest.  相似文献   

20.
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data (n=13) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号