首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Centennial climate variability during the Holocene has been simulated in two 10,000 year experiments using the intermediate-complexity ECBilt model. ECBilt contains a dynamic atmosphere, a global 3-D ocean model and a thermodynamic sea-ice model. One experiment uses orbital forcing and solar irradiance forcing, which is based on the Stuiver et al. residual 14C record spliced into the Lean et al. reconstruction. The other experiment uses orbital forcing alone. A glacier model is coupled off-line to the climate model. A time scale analysis shows that the response in atmospheric parameters to the irradiance forcing can be characterised as the direct response of a system with a large thermal inertia. This is evident in parameters like surface air temperature, monsoon precipitation and glacier length, which show a stronger response for longer time scales. The oceanic response, on the other hand, is strongly modified by internal feedback processes. The solar irradiance forcing excites a (damped) mode of the thermohaline circulation (THC) in the North Atlantic Ocean, similar to the loop-oscillator modes associated with random-noise freshwater forcing. This results in a significant peak (at time scales 200–250 year) in the THC spectrum which is absent in the reference run. The THC response diminishes the sea surface temperature response at high latitudes, while it gives rise to a signal in the sea surface salinity. A comparison of the model results with observations shows a number of encouraging similarities.  相似文献   

2.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

3.
We have developed an improved version of a world ocean model with the intention of coupling to an atmospheric model. This article documents the simulation capability of this 1° global ocean model, shows improvements over our earlier 5° version, and compares it to features simulated with a 0.5° model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1° is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1° ocean model is derived from a 0.5°-resolution model developed by A. Semtner (Naval Postgraduate School) and R. Chervin (National Center for Atmospheric Research) for studies of the global eddy-resolving world ocean circulation. The 0.5° bottom topography and continental outlines have been altered to be compatible with the 1° resolution, and the Arctic Ocean has been added. We describe the ocean simulation characteristics of the 1° version and compare the result of weakly constraining (three-year time scale) the three-dimensional temperature and salinity fields to the observations below the thermocline (710 m) with the model forced only at the top of the ocean by observed annual mean wind stress, temperature, and salinity. The 1° simulations indicate that major ocean circulation patterns are greatly improved compared to the 5° version and are qualitatively reproduced in comparison to the 0.5° version. Using the annual mean top forcing alone in a 100-year simulation with the 1° version preserves the general features of the major observed temperature and salinity structure with most climate drift occurring mainly beneath the thermocline in the first 50–75 years. Because the thermohaline circulation in the 1° version is relatively weak with annual mean forcing, we demonstrate the importance of the seasonal cycle by performing two sensitivity experiments. Results show a dramatic intensification of the meridional overturning circulation (order of magnitude) with perpetual winter surface temperature forcing in the North Atlantic and strong intensification (factor of three) with perpetual early winter temperatures in that region. These effects are felt throughout the Atlantic (particularly an intensified and northward-shifted Gulf Stream outflow). In the Pacific, the temperature gradient strengthens in the thermocline, thus helping counter the systematic error of a thermocline that is too diffuse.Partial support is provided by the Office of Health and Environmental Research of the US Department of Energy The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

4.
A number of transient climate runs simulating the last 120?kyr have been carried out using FAMOUS, a fast atmosphere–ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12?kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth’s orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic meridional overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10?kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20?kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth’s orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.  相似文献   

5.
A review is presented of the development and simulation characteristics of the most recent version of a global coupled model for climate variability and change studies at the Geophysical Fluid Dynamics Laboratory, as well as a review of the climate change experiments performed with the model. The atmospheric portion of the coupled model uses a spectral technique with rhomboidal 30 truncation, which corresponds to a transform grid with a resolution of approximately 3.75° longitude by 2.25° latitude. The ocean component has a resolution of approximately 1.875° longitude by 2.25° latitude. Relatively simple formulations of river routing, sea ice, and land surface processes are included. Two primary versions of the coupled model are described, differing in their initialization techniques and in the specification of sub-grid scale oceanic mixing of heat and salt. For each model a stable control integration of near millennial scale duration has been conducted, and the characteristics of both the time-mean and variability are described and compared to observations. A review is presented of a suite of climate change experiments conducted with these models using both idealized and realistic estimates of time-varying radiative forcing. Some experiments include estimates of forcing from past changes in volcanic aerosols and solar irradiance. The experiments performed are described, and some of the central findings are highlighted. In particular, the observed increase in global mean surface temperature is largely contained within the spread of simulated global mean temperatures from an ensemble of experiments using observationally-derived estimates of the changes in radiative forcing from increasing greenhouse gases and sulfate aerosols.  相似文献   

6.
The influences of horizontal advection and horizontal diffusion on the variability of sea surface salinity in stochastically forced systems are investigated. Basic ideas are developed using a two dimensional box model and then extended to a more realistic three dimensional ocean general circulation model. It is shown that, in the absence of advection and diffusion, the ocean response is essentially that predicted by Taylor's random walk model. Advection becomes important when the advective time scale is less than the response time of the mixed layer to the stochastic forcing. Advection of parcels from regions of upwelling into regions of downwelling limits their exposure time to the stochastic forcing and thus the maximum attainable variance in the system (variance increases linearly with time). Regions of upwelling and downwelling may be introduced through the thermohaline overturning circulation or by the wind driven Ekman transport, depending on the specific model configuration. Horizontal diffusion is found to be important when the diffusive time scale is less than the mixed layer response time. The primary role of diffusion is to reduce the effective stochastic forcing through rapid mixing of uncorrelated surface forcing events. Because sea surface salinity does not have a negative feedback with the atmosphere, it is more strongly influenced by weak horizontal processes than sea surface temperature (SST). Accurate knowledge of the stochastic forcing amplitude, decorrelation time, and length scale and distribution are critical to model the variance of sea surface salinity. Aspects of the ocean model which strongly influence the variability of sea surface salinity include the surface velocity, horizontal diffusivity, and the mixed layer depth. Implications on modeling of the ocean and coupled ocean-atmosphere systems are discussed.  相似文献   

7.
In this study, the effects of volcanic forcing on North Pacific climate variability, on interannual to decadal time scales, are examined using climate model simulations covering the last 600?years. The model used is the Bergen Climate Model, a fully coupled atmosphere–ocean general circulation model. It is found that natural external forcings, such as tropical strong volcanic eruptions (SVEs) and variations in total solar irradiance, play an important role in regulating North Pacific Decadal Variability (NPDV). In response to tropical SVEs the lower stratospheric pole–to–equator temperature gradient is enhanced. The North polar vortex is strengthened, which forces a significant positive Arctic Oscillation. At the same time, dipole zonal wind anomalies associated with strong polar vortex propagate downward from the lower stratosphere. Through positive feedbacks in the troposphere, the surface westerly winds across the central North Pacific are significantly weakened, and positive sea level pressure anomalies are formed in the North Pacific. This anomalous surface circulation results in changes in the net heat fluxes and the oceanic advection across the North Pacific. As a result of this, warm water converges in the subtropical western North Pacific, where the surface waters in addition are heated by significantly reduced latent and sensible heat fluxes from the ocean. In the eastern and high–latitude North Pacific the ocean loses more heat, and large–scale decreases in sea surface temperatures are found. The overall response of this chain of events is that the North Pacific enters a negative phase of the Pacific decadal oscillation (PDO), and this negative phase of the PDO is maintained for several years. It is thus concluded that the volcanic forcing plays a key role in the phasing of the PDO. The model results furthermore highlight the important role of troposphere–stratosphere coupling, tropical–extratropical teleconnections and extratropical ocean–atmosphere interactions for describing NPDV.  相似文献   

8.
The relative importance of regional processes inside the Arctic climate system and the large scale atmospheric circulation for Arctic interannual climate variability has been estimated with the help of a regional Arctic coupled ocean-ice-atmosphere model. The study focuses on sea ice and surface climate during the 1980s and 1990s. Simulations agree reasonably well with observations. Correlations between the winter North Atlantic Oscillation index and the summer Arctic sea ice thickness and summer sea ice extent are found. Spread of sea ice extent within an ensemble of model runs can be associated with a surface pressure gradient between the Nordic Seas and the Kara Sea. Trends in the sea ice thickness field are widely significant and can formally be attributed to large scale forcing outside the Arctic model domain. Concerning predictability, results indicate that the variability generated by the external forcing is more important in most regions than the internally generated variability. However, both are in the same order of magnitude. Local areas such as the Northern Greenland coast together with Fram Straits and parts of the Greenland Sea show a strong importance of internally generated variability, which is associated with wind direction variability due to interaction with atmospheric dynamics on the Greenland ice sheet. High predictability of sea ice extent is supported by north-easterly winds from the Arctic Ocean to Scandinavia.  相似文献   

9.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

10.
外强迫对热带季节内振荡影响的模拟研究   总被引:5,自引:2,他引:3  
应用经过修改的NCAR CCM3模式和CAM2模式进行的数值实验结果以及NCEP的GFS模式的输出结果讨论了海温等外强迫作用对热带季节内振荡的影响.结果表明,热带季节内振荡是热带大气固有的内部变率.它是由大气内部过程的相互作用决定的.但外强迫对热带季节内振荡的强度、传播方向等有明显的影响.当外强迫没有变化时,模式可以模拟出与观测近似的低频振荡.当作为外强迫的海温和太阳辐射有年内季节变化时,模式模拟的季节内振荡则明显减弱.当海温与辐射不仅有季节变化而且有年际变化时,模式模拟的季节内振荡会进一步减弱.具有长周期的外强迫还会削弱季节内振荡中东移波动的能量而增加静止波的强度.在与海洋模式耦合的状态下,模式不受来自海洋的外强迫影响,而是与海洋构成一个耦合系统,可以产生最强的季节内振荡.  相似文献   

11.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

12.
Prediction of the Pacific sea surface temperature (SST) anomaly in the coming decades is a challenge as the SST anomaly changes over time due to natural and anthropogenic climate forcing. The climate changes in the mid-1970s and late-1990s were related to the decadal Pacific SST variability. The changes in the mid-1970s were associated with the positive phase of decadal El Niño-Southern Oscillation (ENSO)-like SST variation, and the changes in the late-1990s were related to its negative phase. However, it is not clear whether this decadal SST variability is related to any external forcing. Here, we show that the effective solar radiation (ESR), which includes the net solar radiation and the effects of volcanic eruption, has modulated this decadal ENSO-like oscillation. The eastern Pacific warming (cooling) associated with this decadal ENSO-like oscillation over the past 139 years is significantly related to weak (strong) ESR. The weak ESR with strong volcanic eruption is found to strengthen the El Niño, resulting in an El Niño-like SST anomaly on the decadal time scale. The strong eruptions of the El Chicho’n (1982) and Pinatubo (1991) volcanoes reduced the ESR during the 1980s and 1990s, respectively. The radiation reduction weakened the Walker circulation due to the “ocean thermostat” mechanism that generates eastern Pacific warming associated with a decadal El Niño-like SST anomaly. This mechanism has been confirmed by the millennium run of ECHO-G model, in which the positive eastward gradient of SST over the equatorial Pacific was simulated under the weak ESR forcing on the decadal time scale. We now experience a reversal of the trend in the ESR. The strong solar radiation and lack of strong volcanic eruptions over the past 15 years have resulted in strong ESR, which should enhance the Walker circulation, leading to a La Niña-like SST anomaly.  相似文献   

13.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

15.
Several 19-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the monthly mean sea surface temperature (SST) observed in 1970–1988 were examined to study extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST monthly variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis (CCA), which select from two time-dependent fields optimally correlated pairs of patterns, was applied to monthly anomalies of SST in the North Alantic and Pacific Oceans and monthly anomalies of sea level pressure and 500 hPa geopotential height in the Northern Hemisphere. In the GAGO run the best correlated atmospheric pattern is global and is characterized by north-south dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospehric response is more local than in the GAGO run with main centers in the North Atlantic and North Pacific, respectively. The extratropical response in the GAGO run is not equal to the sum of the responses in the MOGA and TOGA runs. The artificial meridional SST gradients at 25°–30°N probably influence the results of the MOGA and TOGA runs. The atmopsheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 hPa. winter climate. The normal modes with smallest eigenvalues are similar to the model leading variability modes and canonical patterns of 500 hPa geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans.  相似文献   

16.
This study explores natural and anthropogenic influences on the climate system, with an emphasis on the biogeophysical and biogeochemical effects of historical land cover change. The biogeophysical effect of land cover change is first subjected to a detailed sensitivity analysis in the context of the UVic Earth System Climate Model, a global climate model of intermediate complexity. Results show a global cooling in the range of –0.06 to –0.22 °C, though this effect is not found to be detectable in observed temperature trends. We then include the effects of natural forcings (volcanic aerosols, solar insolation variability and orbital changes) and other anthropogenic forcings (greenhouse gases and sulfate aerosols). Transient model runs from the year 1700 to 2000 are presented for each forcing individually as well as for combinations of forcings. We find that the UVic Model reproduces well the global temperature data when all forcings are included. These transient experiments are repeated using a dynamic vegetation model coupled interactively to the UVic Model. We find that dynamic vegetation acts as a positive feedback in the climate system for both the all-forcings and land cover change only model runs. Finally, the biogeochemical effect of land cover change is explored using a dynamically coupled inorganic ocean and terrestrial carbon cycle model. The carbon emissions from land cover change are found to enhance global temperatures by an amount that exceeds the biogeophysical cooling. The net effect of historical land cover change over this period is to increase global temperature by 0.15 °C.  相似文献   

17.
A global ocean general circulation model, called LASG/IAP Climate system ocean model (LICOM), is employed to study the influence of climate change on the uptake and storage of anthropogenic CO 2 in the global ocean. Two simulations were made: the control run (RUN1) with the climatological daily mean forcing data, and the climate change run (RUN2) with the interannually varying daily mean forcing data from the NCEP (National Centers for Environmental Prediction) of the US. The results show that the simulated distributions and storages of anthropogenic dissolved inorganic carbon (anDIC) from both runs are consistent with the data-based results. Compared with the data-based results, the simulations generate higher anDIC concentrations in the upper layer and lower storage amount of anDIC between the subsurface and 1000-m depth, especially in RUN1. A comparison of the two runs shows that the interannually varying forcing can enhance the transport of main water masses, so the rate of interior transport of anDIC is increased. The higher transfer rate of anDIC in RUN2 decreases its high concentration in the upper layer and increases its storage amount below the subsurface, which leads to closer distributions of anDIC in RUN2 to the data-based results than in RUN1. The higher transfer rate in RUN2 also induces larger exchange flux than in RUN1. It is estimated that the global oceanic anthropogenic CO 2 uptake was 1.83 and 2.16 Pg C yr 1 in the two runs in 1995, respectively, and as of 1994, the global ocean contained 99 Pg C in RUN1 and 107 Pg C in RUN2 of anDIC, indicating that the model under the interannually varying forcing could take up 8.1% more anthropogenic carbon than the model under the climatological forcing. These values are within the range of other estimates based on observation and model simulation, while the estimates in RUN1 are near the low bound of other works. It is estimated that the variability of root mean square of the global air-sea anthropogenic carbon flux from the simulated monthly mean results of RUN2 with its seasonal cycle and long-term trend removed is 0.1 Pg C yr 1 . The most distinct anomalies appear to be in the tropical Pacific Ocean and the Southern Ocean.  相似文献   

18.
The Kuroshio Extension region is characterized by energetic oceanic mesoscale and frontal variability that alters the air–sea fluxes that can influence large-scale climate variability in the North Pacific. We investigate this mesoscale air-sea coupling using a regional eddy-resolving coupled ocean–atmosphere (OA) model that downscales the observed large-scale climate variability from 2001 to 2007. The model simulates many aspects of the observed seasonal cycle of OA coupling strength for both momentum and turbulent heat fluxes. We introduce a new modeling approach to study the scale-dependence of two well-known mechanisms for the surface wind response to mesoscale sea surface temperatures (SSTs), namely, the ‘vertical mixing mechanism’ (VMM) and the ‘pressure adjustment mechanism’ (PAM). We compare the fully coupled model to the same model with an online, 2-D spatial smoother applied to remove the mesoscale SST field felt by the atmosphere. Both VMM and PAM are found to be active during the strong wintertime peak seen in the coupling strength in both the model and observations. For VMM, large-scale SST gradients surprisingly generate coupling between downwind SST gradient and wind stress divergence that is often stronger than the coupling on the mesoscale, indicating their joint importance in OA interaction in this region. In contrast, VMM coupling between crosswind SST gradient and wind stress curl occurs only on the mesoscale, and not over large-scale SST gradients, indicating the essential role of the ocean mesocale. For PAM, the model results indicate that coupling between the Laplacian of sea level pressure and surface wind convergence occurs for both mesoscale and large-scale processes, but inclusion of the mesoscale roughly doubles the coupling strength. Coupling between latent heat flux and SST is found to be significant throughout the entire seasonal cycle in both fully coupled mode and large-scale coupled mode, with peak coupling during winter months. The atmospheric response to the oceanic mesoscale SST is also studied by comparing the fully coupled run to an uncoupled atmospheric model forced with smoothed SST prescribed from the coupled run. Precipitation anomalies are found to be forced by surface wind convergence patterns that are driven by mesoscale SST gradients, indicating the importance of the ocean forcing the atmosphere at this scale.  相似文献   

19.
The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere–ocean coupled mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by the slow LSW advection at the intermediate depth.  相似文献   

20.
To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with different horizontal grid spacings. The horizontal grid spacings span a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today's computers. The experiments include four cases employing 4°, 2°, 1° and 1/2° spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases, 1/2° spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/2° spacing, are also included. The 1/2° run resolves most of the observed mesoscale eddy energy in the ocean. Artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, the simulations show significant changes as resolution increases. These changes generally but not always bring the model into better agreement with observations. Differences are typically more noticeable when comparing the 4° and 2° runs than when comparing the 2° and 1° runs or the 1° and 1/2° runs. A reasonable conclusion to draw for current studies with coupled ocean-atmosphere GCMs is that the ocean grid spacing could be set to about 1° to accrue the benefits of enhanced resolution without paying an excessively steep price in computer-time cost. The model's poleward heat transport at 1/2° grid spacing peaks at about 1 × 1015 W in the Northern Hemisphere and 0.5 × 1015 W in the Southern Hemisphere. These values are significantly below observations, a problem typical of ocean GCMs even when they are less constrained than in the present study. This present problem is alleviated somewhat in the 1/2° run. In this case, however, the eddies resolved by the model generally act to counter rather than to reinforce the heat transport of the mean flow. Improved heat transport may result less from enhanced resolution than from other changes made in this version of the model, such as more accurate wind forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号