首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太阳微波M型爆发   总被引:1,自引:0,他引:1  
分析北京天台1998年4月15日观测到的一个太阳微波M型爆发事件。M型爆发实质上是III型爆发的一个次型,它由两个连续的U型爆发所组成,即爆发源在同一个磁环中由于磁镜的作用而连续往返运动后的轨迹,但是在低时间分辨率(0.2s)记录资料中却是U型爆发的形态。因此高时间分辨率(8ms)的记录资料能更准确地反映M型爆发源的真实运动情况。对比组成M型爆发的两个U型爆发,可以看到,该磁环很可能处在下降的演化  相似文献   

2.
分析北京天文台1998年4月15日观测到的一个太阳微波M型爆发事件.M型爆发实质上是Ⅲ型爆发的一个次型,它由两个连续的U型爆发所组成,即爆发源在同一个磁环中由于磁镜的作用而连续往返运动后的轨迹,但是在低时间分辨率(0.2s)记录资料中却是 U型爆发的形态.因此高时间分辨率(8 ms)的记录资料能更准确地反映M型爆发源的真实运动情况.对比组成M型爆发的两个U型爆发,可以看到,该磁环很可能处在下降的演化阶段.最后讨论该磁环可能的空间分布.  相似文献   

3.
介绍了云南天文台和北京天文台频谱仪所观测到具有正、负频漂的米波Ⅲ型爆发和微波尖峰辐射.对双向电子束源的频率和高度进行了估计.2个事件都表明在具有正、负频漂率的爆发之间有一分界频率(250和2900MHz),这说明爆发源是一个复杂加速源,电子束同时向上、下2个方向注入.由本文的2个事例可以说明1.双向电子束的转换(changeover)范围是在250~2900MHz的宽频带里,并且起源是在很小范围(4~70MHz)内.这些电子束从高层到低层日冕都有一个很窄的独立加速区,文中的Ⅲ型爆发对可能是它们的等离子体辐射现象.2.在低日冕分离开放磁场和闭合磁场的电流片,以及高日冕相反方向的开放磁力线的交叉区域可能都是双向电子加速区.从闭合磁场到开放磁场的磁拓扑范围将是很大的(大约在光球上2×104km到10.7×104km).  相似文献   

4.
一个多次产生CME的活动区特征分析   总被引:1,自引:1,他引:0  
1998年4月-5月8210活动区在日面上接连出现6次大的爆发活动,搜集了这个活动区在整个日面上软X射线曲线,射电Ⅱ、Ⅳ型爆发,射电日像仪和远紫外观测等资料,它的能量积累过程快,3次软X射线爆发曲线的时间轮廓有一定的相似性。发生日冕物质抛射(CME)时,它的磁环只是局部开放,很快又收拢成一个闭合磁环,在一些非热电子的轰击下,再度被加热,又产生了强列的X射线爆发和射电Ⅱ、Ⅳ型爆发,磁环的薄弱处犹如一个活火山口,CME容易从此处再次喷发,找到非热过程与热过程衔接的拐点,在SXR时间轮廓曲线上它表现为斜率突变点,往往有Ⅲ型爆发作为对应的标志,日冕不同层次上先后出现的Ⅱ型爆发可作为CME出现的有力证据,并可作为判断CME运动速度的依据。  相似文献   

5.
本文从SGD上1989年四个大活动区中选取微波爆发和软X射线耀斑(SXR 耀斑>C5级)的相应参量进行统计分析,得到它们之间的相关系数R,一般都有0.9≤|R|<1,从而说明了SXR耀斑同微波爆发之间存在着紧密的共生关系,也证实了耀斑期间由微波爆发源区(磁环顶部)流出的大量非热电子束沿磁环两翼在下倾注到色球层时,因爆发性碰撞加热而引起色球等离子体蒸发,蒸发的高温物质沿磁环上升而发出波长为(1—8A)的SXR 耀斑辐射(10~6K相似文献   

6.
1988年12月16日世纪时08h31min至09h41min,云南天文台PhoenixI日冕射电频谱仪(1.42GHz,2.84GHz,4.00GHz)收到一个罕见的微波Ⅳ型大爆发,爆发从米波Ⅳ型一直延伸到微波Ⅳ型,持续时间长,爆发强度大,爆发型别复杂。前后出现了五个主峰段,呈出现1.2min和1.25min的短周期的长周期振荡。在其中的两个频段上叠加有丰富的Sike辐射,概括爆发源区的扭斜磁场  相似文献   

7.
对国家天文台2.6~3.8GHz频谱仪在第23太阳活动周上升段(1996~1998)记录到的Ⅲ型爆发,与日冕物质抛射(CME)作了统计分析。发现微波Ⅲ型爆发可能是CME的先兆现象,并讨论了它们的辐射机制。  相似文献   

8.
射电Ⅳ型运动爆发同日冕物质抛射(CMEs)关系极为密切。本文基于对Ⅳ型运动爆发的研究以及CMEs开放场的物理条件,探讨了CMEs形成及抛射的物理条件。由于磁通量突然喷发,能量大量释放,在CME闭合场中的等离子体被加速,导致高能质子和高能电子被大磁环捕获。随着磁环内的热压P和磁压Pm的升高,当β>βT时磁环将炸裂,从而产生CMEs。抛射出的未离化的等离子体团将产生等离子体基波与谐波辐射。随着等离子体的不断离化,高能相对论电子绕开放磁场线作螺旋飞行,这时等离体辐射降到次要地位,回旋同步加速辐射上升到主导地位,这就是射电Ⅳ型运动爆发。如果离化的早,则在微波波段也能看到Ⅳ型运动爆发。这就是微波Ⅳ型爆发,也是微波Ⅳ型爆发罕见的原因。射电运动Ⅳ型爆发源就是日冕抛射的物质。  相似文献   

9.
分析了1993-10-02 0739.5-0745.0UT在2.840GHz-2.545GHz观测到的一次太阳射射电爆发事件,证认了这次爆发的一部分是微波类Ⅲ型爆发。计算结果表明,这次Ⅲ型爆发是由速度为1.0×10^8m/s的相对论性电子束所引起的,产生电子束的源区背景温度为T-3×10^7K,射电爆发亮温度Tb=10612K,爆发源区的悄度L-3.4×10^2km。  相似文献   

10.
我们用新的时间分辨率短至8ms 的2 .6 ~3 .8GHz 微波动态频谱仪在1998 年4 月15 日爆发和1997 年11 月3 日爆发中发现了微U 型爆发。其顶部频率为3 .2 ~3 .4GHz( 相应的等离子体密度:基波:1 .2 ×1011 - 1 .4 ×1011/cm 3 ,二次谐波:3 .2 ×1010 - 3 .5 ×1010/cm 3) ;根部频率为3 .4 ~3 .6GHz;单个U 型爆发的频率范围为60 ~220 MHz ;上升段频漂率为7 ~28GHz/s;上升段持续时间为8 ~24ms;寿命为16 ~48ms;偏振度大于80 % 。在活动区为偶极子磁场的假设下,估计源区高度约为1 .3 ×104 公里,单一环的高度为250 ~800 公里。由此得出结论:1 .由于高频漂率和高偏振度,似乎发现的微U 型爆发不是Ⅲ型爆发形成,而是尖峰辐射(Spike) 形成。2 .我们发现的是小尺度的微磁环,其尺度与Spike 辐射的寿命相当。我们在1997 年11 月2 日的爆发中发现平均周期为数十ms 的准周期振荡群。在高密度流管的磁声波MHD 振荡条件下,可取得磁环半径约90 公里的结果。由此可以得到微磁环物理尺度的图象  相似文献   

11.
微波Ⅲ型爆发和微波尖峰辐射是太阳微波爆发中两个主要的精细结构,由于微波段比长波段的情况更复杂,单从形态上很难区分。1994年Islike & Benz给出1-3GHz频带上的各类爆发分类定义,本文参考了其中有关微波Ⅲ型爆发和微波尖峰辐射的分类,分析北京天文台2.6-3.8GHz频带上观测到的微波尖峰辐射的精细结构,发现该定义有局限性,重新定义了本波段上的微波Ⅲ型爆发和微波尖峰辐射,并讨论了这种分类  相似文献   

12.
综述云南天文台在太阳活动22周峰年期间观测到的米波射电频谱资料,和在处理资料时 一些共生毫秒级Spike的Ⅲ型爆发,它们的不同形态提示了Ⅲ型爆发和毫秒级Spike的发生关系。通过两个典型事件的分析,根据Spike和Ⅲ型爆发出现的 时序以及形态的连续和转换特性,证实了日冕电子加速区位于毫秒级Spike爆发和Ⅲ型爆发的源区之上,由观测指出Ⅲ型爆发对应的界面频率是位于250MHz附近,并试图用等离子假设  相似文献   

13.
太阳射电微波爆发及其精细结构研究进展   总被引:1,自引:0,他引:1  
太阳射电微波爆发携带着爆发源区的物理环境及辐射机制等诸多重要信息。其辐射频段较高,通常来自低日冕磁重联区,尤其是微波爆发的精细结构,持续时间短、变化快、结构复杂,可以反映重联过程复杂的磁场结构、高能粒子运动等许多特征。综述了太阳微波射电爆发分类研究的3个主要阶段,介绍了每一阶段的重要爆发类型、物理机制研究及相应的观测设备,讨论了进一步研究的方向。  相似文献   

14.
位于日冕微波区的微波Ⅲ型爆发界面频率的发现   总被引:3,自引:0,他引:3  
在北京天台1.0-2.0GHz射电频谱仪记录到的1994年1月5日爆发图上,首次发现一界面频率位于1240MHz与1340MHz之间的微波Ⅲ型爆发对,其频率漂率为-0.22GHz/s和+0.23GHz/s由此推出电子加速区位于光球之上,3.7×10^4km的高度,电子加速区及Ⅲ型爆发形成区的高度范围约为1000公里,而电子束的速度相应为0.102c及0.106c。  相似文献   

15.
微波Ⅲ型爆发和微波尖峰辐射是太阳微波爆发中两个主要的精细结构,由于微波段比长波段的情况更复杂,单从形态上很难区分。1994 年Islike & Benz 给出13GHz 频带上的各类爆发分类定义,本文参考了其中关于微波Ⅲ型爆发和微波尖峰辐射的分类,分析北京天文台2 .63 .8GHz 频带上观测到的微波尖峰辐射的精细结构,发现该定义有局限性,重新定义了本波段上的微波Ⅲ型爆发和微波尖峰辐射,并讨论了这种分类定义与设备时间分辨率的关系  相似文献   

16.
详细介绍了北京天文台2.6-3.8GHz太阳射电频谱仪在1998年4月15日观测到的一群微波Ⅲ型爆发。它们具有宽频带(>100MHz)、短时标(<100ms)、高偏振(100%)、短周期脉动(百毫秒)、内向快速频率漂移(高于1GHz/s)等显著特征。讨论了它的观测特征、时间轮廓和脉动现象,认为该群微波Ⅲ型爆发起源于等离子体基波辐射,阐述了在高频范围Ⅲ型爆发起源于等离子体基波辐射的可能性。  相似文献   

17.
统计分析了太阳活动周下降段(2003~2005年)发生的76个共生CME的射电爆发事件.射电爆发资料来自国家天文台和Culgoora的微波和米波频谱仪.在76个事件中有50个快速CME和26个慢速CME.从中发现,快速CME和慢速CME的产率分别随着太阳活动周的降低而下降和上升,这可能说明CME的产率与太阳活动周中日冕磁结构的位形和位置变化有关.同时也发现,射电爆发的类型和寿命有一个变化规律,即随着频率的降低射电爆发的寿命变长,此特征支持了伴生CME的Ⅱ型爆发统一模型的思想.另外还发现在厘米一分米波范围,CME开始前后,容易发生射电Ⅲ型爆发或快速精细结构.这说明射电辐射的精细结构可能是CME的前兆现象或CME早期发展阶段由于磁重联引发的低日冕小尺度磁扰动的结果.  相似文献   

18.
本文介绍了云南天文台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辩率同步观测得到的五个微波II型爆发事件,它们具有宽频带、长和短寿命、内向和外向快速频漂等特征.观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生.这些观测特征既不完全同于米波—分米波II型爆发,也不完全同于微波高频段II型爆发,说明在微波低频段可能存在二重性或过渡现象  相似文献   

19.
对国家天文台5.2~7.6GHz频谱仪在23周太阳活动峰年期间(1999.8~2003.10)记录到的Ⅲ型爆发,与日冕物质抛射(CME)、Ha耀斑及相关事件作了统计分析。发现微波Ⅲ型爆发与CME的关系没有Ⅱ型射电爆发与CME的关系密切;与CME对应的Ha耀斑91%的都是渐变耀斑,且90%的渐变耀斑发生在CME之前,平均在前29分钟,仅有10%的耀斑发生在CME之后,平均在后4分钟;从这些统计特征出发,讨论了它们的辐射机制。  相似文献   

20.
根据1994年Islike&Benz给出的1-3GHz频带上的微波Ⅲ型爆发和微波尖峰幅身的分类定义,分析北京天台2.6-3.8GHZ频带上观测到的微波爆发的精细结构,通过分析发现该定义有局限性。本重新定义了该波段上的微波Ⅲ型爆发和微波尖峰辐身,并讨论了这种分类定义与设备时间分辨率的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号