首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muons from the “prompt” decays of charmed mesons in cosmic ray air showers start to show abundance on the atmospheric muon spectrum from few tens of TeV. Study of these prompt muons have broader interest in particle and astroparticle physics. The measurement of prompt muon in air showers is challenging because of their low production rate and the large amount of conventional muons produced in company with them. This paper describes the simulation study of a method that identifies prompt muon signatures based on the pattern of stochastic energy losses by muon bundles in deep under ice. The systematics associated with different hadronic interaction models and cosmic ray primary composition assumptions were estimated. Using IceCube as an example, we briefly discussed the challenge of using this method in experimental data analysis.  相似文献   

2.
3.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

4.
5.
In models with TeV-scale gravity, ultrahigh energy cosmic rays can generate microscopic black holes in the collision with atmospheric and terrestrial nuclei. It has been proposed that stringent bounds on TeV-scale gravity can be obtained from the absence of neutrino cosmic ray showers mediated by black holes. However, uncertainties in the cross section of black hole formation and, most importantly, large uncertainties in the neutrino flux affects these bounds. As long as the cosmic neutrino flux remains unknown, the non-observation of neutrino induced showers implies less stringent limits than present collider limits.  相似文献   

6.
《Astroparticle Physics》2003,19(6):715-728
The KASCADE experiment measures a high number of EAS observables with a large degree of sampling of the electron–photon, muon, and hadron components. It provides accurate data for an event-by-event analysis of the primary cosmic ray flux in the energy range around the knee. The possibility of selecting samples of enriched proton and iron induced extensive air showers by applying the statistical techniques of multivariate analyses is scrutinized using detailed Monte Carlo simulations of three different primaries. The purity and efficiency of the proton and iron classification probability is investigated. After obtaining enriched samples from the measured data by application of the procedures the reconstructed number of hadrons, hadronic energy and other parameters are investigated in the primary energy range 1015–1016 eV. By comparing these shower parameters for purified proton and iron events, respectively, with simulated distributions an attempt is made to check the validity of strong interaction models at high energies.  相似文献   

7.
The appropriate selection of a coincidence time interval in low-background experiments that are based on the rejection of anticoincidence background events is very important for reducing the influence of cosmic-ray muons on acquired spectral data, especially on certain energy regions of the obtained spectra. In an experiment that was performed by the coincidence system of an HPGe detector and a plastic detector in a surface laboratory, where the cosmic-ray muon flux is much higher than it would be in the conditions found deep underground (thus, better statistics in the acquired data are provided), the time resolution of the detected events is explored. We found that the prompt and delayed coincidence events between a plastic veto detector and a Ge detector can be sharply divided for approximately 100 ns in two groups. In addition, the bremsstrahlung and annihilation events can be time-resolved from the (n, n′) events, although all of these events belong to the group of delayed events. We also detected substantially delayed annihilation events, which are caused by the decays of stopped positive muons.  相似文献   

8.
Recent reports of superhigh energy cosmic rays beyond the expected spectral cutoff have intensified interest in the unknown origin of the highest energy cosmic rays. There is a need for a much larger data base of more precisely measured air showers. This requires new sensitive detectors of enormous aperture. Combining a ground array of particle counters with an optical detector of atmospheric fluorescence yields a detector of outstanding capability. Such a hybrid detector provides far more accurate measurements of energies, arrival directions, and primary particle atomic masses than can be achieved by either type of detector separately.  相似文献   

9.
Results will be shown from the Astroneu array developed and operated in the outskirts of Patras, Greece. An array of 9 scintillator detectors and 3 antennas were deployed to study Extensive Air Showers (EAS) as a tool for calibrating an underwater neutrino telescope, possible other applications in muon tomography, education purposes, and last but not least, for the detection of air showers via their electromagnetic signature. In this work we concentrate to the electromagnetic detection of air showers presenting the operation of the RF system, as well as the analysis of the radio signals captured in coincidence with the scintillator detectors. We demonstrate the adequacy of the method to detect cosmic events even in the presence of high urban electromagnetic background, using noise filters, timing and signal polarization. The results are compared with well understood event reconstruction using the scintillator detectors and are indicating that cosmic showers were detected, proving that such small scale hybrid arrays can operate in strong background noise environments.  相似文献   

10.
Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.  相似文献   

11.
Hiroyuki K.M. Tanaka 《Icarus》2007,191(2):603-615
In order to evaluate the obliquity-driven atmospheric-density path length effect on nuclide production rate on Mars, we performed a Monte-Carlo simulation to produce the number of secondary particles such as muons, neutrons and protons in the martian atmosphere and to simulate that production of 10Be and 36Cl in the martian regolith by muons and neutrons depends on how much atmosphere had been present for the past 10 million years. The vertical profile of the present martian atmosphere to generate secondary particles has been determined based on the data provided by the Viking missions. For other thickness profiles, we scaled Linsley's atmospheric model. Atmospheric shower has been generated with the SIBYLL 2.1 for high-energy hadronic interactions and EHSA for low energy photonuclear interactions. With increasing atmospheric thickness, more primary interactions occur in the atmosphere. Consequently the proton flux is reduced and the secondary cosmic ray flux, such as muons or energetic neutrons increases at surface. The result indicates that the muon production is more sensitive to obliquity-driven atmospheric variations than proton reduction. A thicker atmosphere would result in enhanced nuclide production at a place deeper than 5 m below the surface and the nuclides present in detectable concentrations. Application to the polar deposit is described.  相似文献   

12.
《Astroparticle Physics》2006,24(6):467-483
Lateral distributions for electrons and muons in extensive air showers measured with the array of the KASCADE experiment are compared to results of simulations based on the high-energy hadronic interaction models QGSJet and SIBYLL. It is shown, that the muon distributions are well described by both models. Deviations are found for the electromagnetic component, where both models predict a steeper lateral shape than observed in the data. For both models the observed lateral shapes of the electron component indicate a transition from a light to a more heavy composition of the cosmic ray spectrum above the knee.  相似文献   

13.
There is considerable interest world-wide in developing large area atmospheric Cherenkov detectors for ground-based gamma-ray astronomy. This interest stems, in large part, from the fact that the gamma-ray energy region between 20 and 250 GeV is unexplored by any experiment. Atmospheric Cherenkov detectors offer a possible way to explore this region, but large photon collection areas are needed to achieve low energy thresholds. We are developing an experiment using the heliostat mirrors of a solar power plant as the primary collecting element. As part of this development, we built a detector using four heliostat mirrors, a secondary Fresnel lens, and a fast photon detection system. In November 1994, we used this detector to record atmospheric Cherenkov radiation produced by cosmic ray particles showering in the atmosphere. The detected rate of cosmic ray events was consistent with an energy threshold near 1 TeV. The data presented here represent the first detection of atmospheric Cherenkov radiation using solar heliostats viewed from a central tower.  相似文献   

14.
A bi-directional charged particle telescope has been designed to distinguish electrons, muons and protons incident on the telescope from two opposite directions and to measure the energy of particles which stop in the central total energy detector of the system. This paper describes the design, test and evaluation of the telescope using radioactive sources, cosmic rays and low energy (8 MeV) electron beam from an accelerator. This telescope has been used in an experiment to measure the flux and energy spectrum of low energy electrons in 5 to 24 MeV energy interval and protons in 70 to 110 MeV energy region in the upper atmosphere. This experiment was carried out at high altitudes, using large size scientific balloon over the city of Hyderabad, India in Dec. 1984. Ground level low energy muon flux has been observed at Ahmedabad and Hyderabad.  相似文献   

15.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

16.
《Astroparticle Physics》2003,18(6):615-627
The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known γ-ray sources are also proved negative.  相似文献   

17.
At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays.The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to primary mass and has an almost linear dependence with primary energy.  相似文献   

18.
Data taken with ten Cosmic Ray Tracking (CRT) detectors and the HEGRA air-shower array on La Palma, Canary Islands, have been analysed to investigate changes of the cosmic ay mass composition at the ‘knee’ of the cosmic-ray flux spectrum near 1015 eV energy. The analysis is based on the angular distributions of particles in air showers. HEGRA data provided the shower size, direction, and core position and CRT data the particle track information. It is shown that the angular distribution of muons in air showers is sensitive to the composition over a wide range of shower sizes and, thus, primary cosmic-ray energies with little systematic uncertainties. Results can be easily expressed in terms of ln A of primary cosmic rays. In the lower part of the energy range covered, we have considerable overlap with direct composition measurements by the JACEE collaboration and find compatible results in the observed rise of ln A. Above about 1015 eV energy we find no or at most a slow further rise of ln A. Simple cosmic-ray composition models are presented which are fully consistent with our results as well as the JACEE flux and composition measurements and the flux measurements of the Tibet ASγ collaboration. Minimal three-parameter composition models defined by the same power-law slope of all elements below the knee and a common change in slope at a fixed rigidity are inconsistent with these data.  相似文献   

19.
We present a trend analysis of the ISO-SWS detector performance and a study of the space radiation effects on the SWS detectors. In particular, dark currents, dark current noise and detector responses have been checked as a function of time through the mission and as a function of time in arevolution. The results show that these parameters were stable during the mission in all bandsbut for band 3 (Si:As). Dark currents and responses were found to be higherin the first hours following the start of the science window,especially in band 2 (Si:Ga). We have studied the impacts of cosmic rays and radiation belt particles on the SWS detectors, as well as of the only large solar proton event on November 6, 1997,that occurred during the ISO mission (operated during solar minimum).The observed glitch rates in all SWS bands are found to be between 2 and4 times higher than the value predicted by the CREME96 model for the cosmic ray flux in the period considered. The bands that registered the highest glitch rates showed also a correlation with the electron fluxes measured on theGOES 9 spacecraft. From the distribution of glitchheights (voltage jumps in the detector signal), we have derived the deposited energy distributions of the particles hits. Our results lead to the conclusion that secondaryparticles produced in the shield and the detectors contributed at least as much as cosmic rays to the observed glitch rate. The effects on the detectors of the November 6, 1997 event, which caused that all observationsin a revolution were declared failed, are described in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号