首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the direct searches for WIMP-type dark matter, the DAMA experiment is unique in that it has consistently reported a positive signal for an annual-modulation signal with a large (9.3σ) statistical significance. This result is controversial because if it is interpreted as a signature for WIMP interactions, it conflicts with other direct search experiments that report null signals in the regions of parameter space that are allowed by the DAMA observation. This necessitates an independent verification of the origin of the observed modulation signal using the same technique as that employed by the DAMA experiment, namely low-background NaI(Tl) crystal detectors. Here, we report first results of a program of NaI(Tl) crystal measurements at the Yangyang Underground Laboratory aimed at producing NaI(Tl) crystal detectors with lower background levels and higher light yields than those used for the DAMA measurements.  相似文献   

2.
Annual modulation due to the Earth's motion around the Sun is a well-known signature of the expected weakly interacting massive particle (WIMP) signal induced in a solid state underground detector. In the present paper, we discuss the prospects of this technique on statistical grounds, introducing annual-modulation sensitivity plots for the WIMP–nucleon scalar cross-section for different materials and experimental conditions. The highest sensitivity to modulation is found in the WIMP mass interval 10mW130 GeV, the actual upper limit depends on the choice of the astrophysical parameters, while the lowest values of the explorable WIMP–nucleon elastic cross-sections fall in most cases within one order of magnitude of the sensitivities of the present direct detection WIMP searches.  相似文献   

3.
The ZEPLIN-III experiment is operating in its second phase at the Boulby Underground Laboratory in search of dark matter WIMPs. The major upgrades to the instrument over its first science run include lower background photomultiplier tubes and installation of a plastic scintillator veto system. Performance results from the veto detector using calibration and science data in its first six months of operation in coincidence with ZEPLIN-III are presented. With fully automated operation and calibration, the veto system has maintained high stability and achieves near unity live time relative to ZEPLIN-III. Calibrations with a neutron source demonstrate a rejection of 60% of neutron-induced nuclear recoils in ZEPLIN-III that might otherwise be misidentified as WIMPs. This tagging efficiency reduces the expected untagged nuclear recoil background from neutrons during science data taking to a very low rate of ?0.2 events per year in the WIMP acceptance region. Additionally, the veto detector provides rejection of 28% of γ-ray induced background events, allowing the sampling of the dominant source of background in ZEPLIN-III - multiple scatter γ-rays with rare topologies. Since WIMPs will not be tagged by the veto detector, and tags due to γ-rays and neutrons are separable, this population of multiple scatter events may be characterised without biasing the analysis of candidate WIMP signals in the data.  相似文献   

4.
中子星可以通过重子物质和暗物质的相互作用吸积暗物质,且在一定条件下, 中子星吸积的暗物质粒子可以引发自引力塌缩形成小型黑洞, 生成的黑洞可能会进一步吞噬中子星.依据文献已有模型, 基于以上物理过程给出了在暗物质粒子不同质量下对暗物质粒子--中子的散射截面的限制.使用弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)模型, 并考虑暗物质粒子是玻色子的情形, 讨论了暗物质粒子有无自相互作用以及有无湮灭等条件下对限制暗物质参数的影响.既考虑了已发现的两个中子星系统来给出对暗物质参数空间的限制,也考虑了两个可能存在的年老中子星来预测未来观测可能对暗物质参数空间的限制.对于考虑玻色--爱因斯坦凝聚(Bose-Einstein Condensate, BEC)的玻色子暗物质, 在无自相互作用或有弱自相互作用, 无湮灭或有很小湮灭截面的条件下,中子星给出的间接观测对暗物质粒子-中子散射截面的限制的强度比XENON1T直接探测实验来得更强.未来, 如果在银心附近能观测到年老中子星, 其观测结果可以提升模型给出的对暗物质粒子--中子散射截面的限制, 从而帮助人们进一步理解暗物质.  相似文献   

5.
The existence of the 22-year modulation of cosmic ray intensity is pointed out, using data of the ion chamber at Huancayo and the neutron monitors at Ottawa and Deep River for about four solar cycles. The modulation consists of two discrete states (high and low intensities), corresponding respectively to those of the polarity of the polar magnetic field of the Sun. This can be interpreted on the basis of the following hypothesis; when the polar magnetic field of the Sun is nearly parallel to the galactic magnetic field, they could easily connect with each other, so that galactic cosmic rays could intrude more easily into the heliomagnetosphere along the magnetic line of force, as compared with those in the anti-parallel state of the magnetic fields. The observed intensity difference between two states is about 4.3 ± 0.2% for neutron monitor (Pc = 1.5GV). The abnormal increase in proton (0.28–0.42 GV) and electron (0.41-3.24 GV) fluxes in the 20th solar cycle and the sudden appearance of anomalous components (He+, etc.) since 1972 can be also explained on the basis of the present hypothesis. The transition between the two states has a time lag behind the polarity reversal, depending on the cosmic ray rigidity, such as about 1 year for the neutron monitor (Pc = 1.5 GV) and about 3.5 years for low rigidity components (P < 1 GV). These time lags could be explained on the basis of the generalized Simpson's coasting solar wind model and the general diffusion-convection theory on some assumptions.  相似文献   

6.
This paper presents the properties of a family of scale-free triaxial haloes. We adduce arguments to suggest that the velocity ellipsoids of such models are aligned in conical coordinates. We provide an algorithm to find the set of conically aligned velocity second moments that support a given density against the gravity field of the halo. The case of the logarithmic ellipsoidal model – the simplest triaxial generalization of the familiar isothermal sphere – is examined in detail. The velocity dispersions required to hold up the self-consistent model are analytic. The velocity distribution of the dark matter can be approximated as a triaxial Gaussian with semiaxes equal to the velocity dispersions.
There are roughly 20 experiments worldwide that are searching for evidence of scarce interactions between weakly interacting massive-particle dark matter (WIMP) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP–nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to ∼40 per cent, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June.  相似文献   

7.
Data are presented from the DRIFT-IId detector operated in the Boulby Underground Science Facility in England. A 0.8 m3 fiducial volume, containing partial pressures of 30 Torr CS2 and 10 Torr CF4, was exposed for a duration of 47.4 live-time days with sufficient passive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low-level background from the decay of radon daughters attached to the central cathode of the detector. However, charge from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these Radon Progeny Recoil events while still retaining sensitivity to fiducial-volume nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 1.8 pb for a WIMP mass of 100 GeV/c2. This sensitivity was achieved without compromising the direction sensitivity of DRIFT.  相似文献   

8.
We investigate the combined effect of neutron and proton superfluidities on the cooling of neutron stars whose cores consist of nucleons and electrons. We consider the singlet state paring of protons and the triplet pairing of neutrons in the cores of neutron stars. The critical superfluid temperatures T c are assumed to depend on the matter density. We study two types of neutron pairing with different components of the total angular momentum of a Cooper pair along the quantization axis (|m J |=0 or 2). Our calculations are compared with the observations of thermal emission from isolated neutron stars. We show that the observations can be interpreted by using two classes of superfluidity models: (1) strong proton superfluidity with a maximum critical temperature in the stellar core T c max ?4×109 K and weak neutron superfluidity of any type (T c max ?2×108 K); (2) strong neutron superfluidity (pairing with m J =0) and weak proton superfluidity. The two types of models reflect an approximate symmetry with respect to an interchange of the critical neutron and proton pairing temperatures.  相似文献   

9.
Making robust predictions for the phase-space distribution of dark matter at the solar neighbourhood is vital for dark matter direct-detection experiments. To date, almost all such predictions have been based on simulations that model the dark matter alone. Here, we use three cosmological hydrodynamic simulations of bright, disc-dominated galaxies to include the effects of baryonic matter self-consistently for the first time. We find that the addition of baryonic physics drastically alters the dark matter profile in the vicinity of the solar neighbourhood. A stellar/gas disc, already in place at high redshift, causes merging satellites to be dragged preferentially towards the disc plane where they are torn apart by tides. This results in an accreted dark matter disc that contributes ∼0.25–1.5 times the non-rotating halo density at the solar position. The dark disc, unlike dark matter streams, is an equilibrium structure that must exist in disc galaxies that form in a hierarchical cosmology. Its low rotation lag with respect to the Earth significantly boosts Weakly Interacting Massive Particle (WIMP) capture in the Earth and Sun, boosts the annual modulation signal and leads to distinct variations in the flux as a function of recoil energy that allow the WIMP mass to be determined.  相似文献   

10.
Weakly interacting massive particles (WIMPs) are a viable candidate for the relic abundance of dark matter (DM) produced in the early universe. So far, WIMPs have eluded direct detection through interactions with baryonic matter. Neutrino emission from accumulated WIMP annihilations in the solar core has been proposed as a signature of DM, but has not yet been detected. These null results may be due to small-scale DM density fluctuations in the halo with the density of our local region being lower than the average  (∼0.3 GeV cm−3)  . However, the accumulated neutrino signal from WIMP annihilations in the Galactic stellar disc would be insensitive to local density variations. Inside the disc, DM can be captured by stars causing an enhanced annihilation rate and therefore a potentially higher neutrino flux than what would be observed from elsewhere in the halo. We estimate a neutrino flux from the WIMP annihilations in the stellar disc to be enhanced by more than an order of magnitude compared to the neutrino fluxes from the halo. We offer a conservative estimate for this enhanced flux, based on the WIMP–nucleon cross-sections obtained from direct-detection experiments by assuming a density of  ∼0.3 GeV cm−3  for the local DM. We also compare the detectability of these fluxes with a signal of diffuse high-energy neutrinos produced in the Milky Way by the interaction of cosmic rays with the interstellar medium. These comparative signals should be observable by large neutrino detectors.  相似文献   

11.
Field strength distributions and low frequency power spectra are derived from interplanetary field measurements made by the HEOS-1 and HEOS-2 satellites during the years 1969–1973. The spectral analysis involved the use of a technique which is shown to allow correctly for missing data. Comparison spectra, derived by the same technique, are presented for the years 1963–1968. The use of mear-field-aligned co-ordinates enabled the easy separation of the transverse and longitudinal fluctuation spectra. A power law function involving a ‘break point’-frequency was fitted to each spectrum by a least squares technique. The total power level, the power spectral density at zero frequency and the correlation length are found to vary significantly and in a similar way over the solar cycle. The magnitude and phase of these variations are compared with measurements of the cosmic ray neutron monitor rate and the coronal green line intensity and the influence of mid-latitude solar phenomena on the character of the interplanetary field in the ecliptic is demonstrated. The correlation length and zero frequency power density are found to be considerably larger than previously estimated and, contrary to the usual assumption in modulation theory, the rms amplitude of the perturbation field is comparable to the mean field experienced by the high rigidity particles. Although the mean interplanetary field strength is found to be independent of the level of solar activity, during higher activity the most probable vector average decreases by approximately 0.5 γ due to the enhanced directional fluctuation in the field. Power anisotropy measurements suggest that Alfvénic disturbances in the solar wind have fluctuation spectra confined mainly to frequencies larger than 10?3 Hz. The data are interpreted as indicating that the cosmic ray intensity in the Galaxy is some 75% larger than the intensity recorded by neutron monitors on Earth. Previous failure to find a correlation between neutron monitor intensity and interplanetary field parameters is attributed to a lack of statistical accuracy in the field data. The measured power spectra are used to estimate the magnitude of the parallel diffusion coefficient using the relationships derived by Klimas and Sandri, Jokipii, and Quenby et al.  相似文献   

12.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

13.
Usoskin  I.G.  Alanko  K.  Mursula  K.  Kovaltsov  G.A. 《Solar physics》2002,207(2):389-399
Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric modulation strength . Convoluting these spectra with the specific yield function of a neutron monitor, we obtain the expected neutron monitor count rates for different values of . Finally, inverting this relation, we calculate the modulation strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953–2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding estimates reported earlier for some years.  相似文献   

14.
We consider the cooling of neutron stars with superfluid cores composed of neutrons, protons, and electrons (for singlet proton pairing and triplet neutron pairing). The emphasis is on triplet neutron pairing with the component of the total moment of neutron pairs along the quantization axis |m J | = 2. This case stands out in that it leads to power-law rather than exponential suppression of the main neutrino processes by neutron superfluidity. For the chosen critical neutron temperatures T cn, the cooling with |m J | = 2 proceeds either almost in the same way as the commonly considered cooling with m J =0 or appreciably faster. The cooling with variable (over the core) critical temperatures T cn(ρ) and T cp(ρ) can generally be described by the cooling with some effective constant temperatures T cn and T cp. The hypothesis of strong neutron superfluidity with |m J | = 2 is in conflict with the observational data on the thermal radiation from isolated neutron stars; the hypothesis of weak neutron superfluidity of any type is consistent with the observations.  相似文献   

15.
At present, it is widely believed that anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), rotational radio transients (RRATs), compact central objects (CCOs) in supernova remnants, and X-ray dim isolated neutron stars (XDINSs) belong to different classes of anomalous objects in which the central bodies are isolated neutron stars. Previously, we have shown that AXPs and SGRs can be described in terms of the drift model for parameters of the central neutron star typical of radio pulsars (rotation periods P ~ 0.1–1 s and surface magnetic fields B ~ 1011–1013 G). Here, we show that some of the peculiarities of the sources under consideration can be explained by their geometry (in particular, by the angle β between the rotation axis and the magnetic moment). If β ? 10° (an aligned rotator), the drift waves in the outer layers of the neutron star magnetosphere can account for the observed periodicity in the radiation. For large β (a nearly orthogonal rotator), the observed modulation of the radiation and its short bursts can be explained by mass accretion from the ambient medium (e.g., a relic disk).  相似文献   

16.
Optimum fill pressures for direction-sensitive dark matter detectors based on tracking in gases are considered. Given the minimum resolvable track length and the gas fill, the Lindhard–Scharf stopping model leads to the existence of an optimum pressure which maximizes the specific event rate R (event rate per unit detector volume). In addition, maximizing the detectibility of the recoil nucleus diurnal asymmetry is considered. Optimum fill pressures are calculated for Ar, CF4, CS2 and Xe gas fills, as a function of the WIMP mass and the minimum resolvable track length. The associated minimum target volumes required to achieve currently competitive WIMP-nucleon cross-section sensitivity are also calculated. The standard isothermal sphere model of the galactic WIMP halo is used throughout, but the method could be extended to use any desired WIMP distribution function.  相似文献   

17.
18.
We provide a new way of constraining the relative scintillation efficiency Leff for liquid xenon. Using a simple estimate for the electronic and nuclear stopping powers together with an analysis of recombination processes we predict both the ionization and the scintillation yields. Using presently available data for the ionization yield, we can use the correlation between these two quantities to constrain Leff from below. Moreover, we argue that more reliable data on the ionization yield would allow to verify our assumptions on the atomic cross sections and to predict the value of Leff. We conclude that the relative scintillation efficiency should not decrease at low nuclear recoil energies, which has important consequences for the robustness of exclusion limits for low WIMP masses in liquid xenon Dark Matter searches.  相似文献   

19.
Dark matter direct search experiments with scintillators need an accurate knowledge of Light Relative Efficiency Factors (REF) between electron and nuclear recoils to estimate the energy of the recoiling nuclei from the scintillation signal (if the light signal is used with this purpose) or to implement an effective background rejection based on the comparison of the scintillation with ionization or heat signals (if the light signal is used for particle discrimination). The Light REF between α and γ particles is required in some nuclear physics applications of scintillators like rare α decay searches, internal radiopurity assessment and some double beta decay searches. Two scintillating bolometers of BGO and Al2O3 were operated at 20 mK and exposed to fast neutrons, gamma rays, α particles and heavy nuclei. We measured their Light REF between γ and α particles and between electron and neutron induced nuclear recoils as a function of the deposited energy. We also measured the Light REF for O and Np ions in BGO. Results obtained for the different Light REFs were unsuccessfully compared with calculations based on a simple semi-empirical approach (with only one fitting parameter) proposed by Tretyak.  相似文献   

20.
Galactic cosmic rays (GCRs) encounter an outward-moving solar wind with cyclic magnetic-field fluctuation and turbulence. This causes convection and diffusion in the heliosphere. The GCR counts from the ground-based neutron monitor stations show intensity changes that are anti-correlated with the sunspot numbers with a lag of a few months. GCRs experience various types of modulation from different solar activity features and influence space weather and the terrestrial climate. In this work, we investigate certain aspects of the GCR modulation at low cut-off rigidity (R c≈1 GV) in relation to some solar and geomagnetic indices for the entire solar cycle 23 (1996?–?2008). We separately study the GCR modulation during the ascending phase of cycle 23 including its maximum (1996?–?2002) and the descending phase including its minimum (2003?–?2008). We find that during the descending phase, the GCR recoveries are much faster than those of the solar parameters with negative time-lag. The results are discussed in light of modulation models, including drift effects and previous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号