首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

2.
Azraq Oasis in the eastern Jordanian desert is an important freshwater resource of the country. Shallow groundwater reserves are heavily exploited since the 1980s and in consequence the groundwater table dropped significantly. Furthermore, some wells of the major well field drilled into the shallow aquifer show an increasing mineralization over the past 20 years. A previous study using conventional tracers did not result in a satisfactory explanation, from where the salt originates and why only a few wells are affected. In this study, the application of dissolved noble gases in combination with other tracer methods reveals a complex mixing pattern leading to the very localized salinization within the well field. It is found that primarily the wells affected by salinization 1) contain distinctly more radiogenic 4He than the other wells, indicating higher groundwater age, and 2) exhibit 3He/4He ratios that argue for an imprint of deep fluids from the Earth's mantle.However, the saline middle aquifer below is virtually free of mantle helium, which infers an upstream from an even deeper source through a nearby conductive fault. The local restriction of the salinization process is explained by the wide range of permeabilities of the involved geologic units. As the wells abstract water from the whole depth profile, they initially pump water mainly from the well conductive top rock layer. As the groundwater table dropped, this layer fell progressively dry and, depending on the local conductivity profile, some wells began to incorporate more water from the deeper part of the shallow aquifer into the discharge. These are the wells affected by salinization, because according to the presented scheme the deep part of the shallow aquifer is enriched in both salt and mantle fluids.  相似文献   

3.
The study reports the age evolution of groundwater as it flows from the recharge area through a regional alluvial aquifer system in North Gujarat-Cambay region in western India. Radiocarbon (14C), 4He and 4He / 222Rn dating methods have been employed. Sediments from a drill core in the Cambay Basin were also analysed for uranium (U) and thorium (Th) concentrations and the measured values have been used to estimate the 4He and 222Rn production rate for groundwater age calculations. Additionally, factors controlling the distribution of 222Rn, 4He and temperature anomalies in groundwater, vis-à-vis their relation to the tectonic framework and lithology of the study area, have also been examined.The multi-isotope study indicated a reasonable correspondence in groundwater age estimates by the three methods employed. The groundwater 14C ages increased, progressively, in the groundwater flow direction: from the foothills of Aravalli Mountains in the east, and reached a value of ∼35 ka towards the region of lowest elevation, linking Little Rann of Kachchh (LRK)-Nalsarovar (NS)-Gulf of Khambhat (GK) in the western part of the study area. In this region, groundwater ages obtained for free flowing thermal wells and springs employing 4He and 4He / 222Rn systematics are in the order of million years. Such anomalous ages are possibly due to enhanced mobilisation and migration of ‘excess helium’ from hydrothermal circulation vents along deep-seated faults. Excluding such anomalous cases and considering all uncertainties, presently estimated 4He and 4He / 222Rn groundwater ages are in reasonable agreement with 14C age estimates in the Cambay Basin for helium release factor (ΛHe) value of 0.4 ± 0.3. The 4He method also indicated west-southwards progression of groundwater ages up to ∼100 ka beyond the Cambay Basin.Large ‘excess helium’ concentrations are also seen to be generally associated with anomalous groundwater temperatures (> 35 °C) and found to overlie some of the basement faults in the study area, particularly along the east and the west flanks of the Cambay Basin. Groundwater 222Rn activities in most of the study area are 800 ± 400 dpm/l. But, a thermal spring at Tuwa on the east flank of the Cambay Basin, having granitic basement at shallow depth, recorded the highest 222Rn activity (∼63,000 dpm/l).  相似文献   

4.
The use of 14C (half-life?=?5,730 years) in modeling the evolution of the 36Cl/Cl ratios in groundwater is reported for the first time. The complexity of the Cl–36Cl system due to the occurrence of different Cl and 36Cl sources and the difficulty of the determination of the initial groundwater 36Cl/Cl ratios have raised concerns about the reliability of using 36Cl (half-life?=?301 thousand years, a) as a groundwater-dating tool. This work uses groundwater 14C age as a calibrating parameter of the Cl–36Cl/Cl decay-mixing models of three wells from the southwestern Great Artesian Basin (GAB), Australia. It aims to allow for the different sources of Cl and 36Cl in the southwestern GAB aquifer. The results show that the initial Cl concentrations range from 245 to 320 mg/l and stable Cl is added to groundwater along flowpaths at rates ranging from 1.4 to 3.5 mg/l/ka. The 36Cl content of the groundwater is assumed to be completely of atmospheric origin. The samples have different Cl–36Cl/Cl mixing-decay models reflecting recharge under different conditions as well as the heterogeneity of the aquifer.  相似文献   

5.
《Applied Geochemistry》2003,18(7):1043-1063
The Memphis aquifer in southwestern Tennessee is confined to a semi-confined unconsolidated sand aquifer and is the primary municipal water source in the Memphis metropolitan area. Past studies have identified regions in the metropolitan area in which the overlying upper Claiborne confining unit lacks significant clay and provides a hydraulic connection between the shallow aquifer and the Memphis aquifer. In this study, major solute chemistry, 3H, and 3H/3He groundwater dating are used to investigate the extent and chemical effects of leakage through the confining unit to the Memphis aquifer in the vicinity of a municipal well field. The 3H/3He dates and geochemical modeling of the chemical data are used to constrain mixing fractions and the timing of modern recharge. Tritium activities of as much as 2.8 TU are observed in shallow production wells, but deeper production wells have 3H activities that approach the detection limit. Trends in water chemistry indicate vertical mixing in the aquifer of shallow Na–SO4–Cl-rich water and deeper Ca–Mg–HCO3-rich water. Water chemistry does not vary consistently with seasonal pumping, but 3H activity generally decreases during low use periods. Stable O and H isotopes show little variation and are not useful groundwater tracers for this study. The 3H-bearing, Na–SO4–Cl-rich water is interpreted to reflect recharge of modern water through the upper Claiborne confining unit. The 3H/3He dates from 5 production wells indicate modern recharge, that infiltrated 15–20 a ago, is present in the shallow production wells. Geologic data and hydrologic boundary conditions suggest that the most likely source for continued leakage is a nearby stream, Nonconnah Creek. Geochemical reaction modeling using the NETPATH computer code suggests that proportions of shallow aquifer water leaking into the Memphis aquifer range from 6 to 32%. The 3H/3He dating and NETPATH modeling results correlate well, suggesting that these complementary analytical tools provide an effective means to evaluate proportions of modern water leaking into semi-confined aquifers. These results also indicate a need to carefully consider connections between surface water and semi-confined groundwater resources in wellhead protection programs.  相似文献   

6.
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and δ13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years).This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.  相似文献   

7.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

8.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   

9.
The assessment of groundwater quality in shallow aquifers is of high societal relevance given that large populations depend directly on these water resources. The purpose of this study was to establish links between groundwater quality, groundwater residence times, and regional geology in the St. Lawrence Lowlands fractured bedrock aquifer. The study focuses on a 4500 km2 watershed located in the St. Lawrence Lowlands of the province of Quebec in eastern Canada. A total of 150 wells were sampled for major, minor, and trace ions. Tritium (3H) and its daughter element, 3He, as well as radiocarbon activity (A14C) were measured in a subset of wells to estimate groundwater residence times. Results show that groundwater evolves from a Ca–HCO3 water type in recharge zones (i.e., the Appalachian piedmont) to a Na–HCO3 water type downgradient, toward the St. Lawrence River. Locally, barium (Ba), fluoride (F), iron (Fe), and manganese (Mn) concentrations reach 90, 2, 18, and 5.9 mg/L respectively, all exceeding their respective Canadian drinking water limits of 1, 1.5, 0.3, and 0.05 mg/L. Release of these elements into groundwater is mainly controlled by the groundwater redox state and pH conditions, as well as by the geology and the duration of rock–water interactions. This evolution is accompanied by increasing 3H/3He ages, from 4.78 ± 0.44 years upgradient to more than 60 years downgradient. Discrepancies between calculated 3H/3He and 14C water ages (the latter ranging from 280 ± 56 to 17,050 ± 3410 years) suggest mixing between modern water and paleo-groundwater infiltrated through subglacial recharge when the Laurentide Ice Sheet covered the study area, and during the following deglaciation period. A linear relationship between 3H activity and corrected 14C versus Mg/Ca and Ba support a direct link between water residence time and the chemical evolution of these waters. The Ba, F, Fe, and Mn concentrations in groundwater originate from Paleozoic rocks from both the St. Lawrence Platform and the Appalachian Mountains. These elements have been brought to the surface by rising hydrothermal fluids along regional faults, and trapped in sediment during their deposition and diagenesis due to reactions with highly sulfurous and organic matter-rich water. Large-scale flow of meltwater during subglacial recharge and during the subsequent retreat of the Laurentide Ice Sheet might have contributed to the leaching of these deposits and their enrichment in the present aquifers. This study brings a new and original understanding of the St. Lawrence Lowlands groundwater system within the context of its geological evolution.  相似文献   

10.
The Najd, Oman, is located in one of the most arid environments in the world. The groundwater in this region is occurring in four different aquifers A to D of the Hadhramaut Group consisting mainly of different types of limestone and dolomite. The quality of the groundwater is dominated by the major ions sodium, calcium, magnesium, sulphate, and chloride, but the hydrochemical character is varying among the four aquifers. Mineralization within the separate aquifers increases along the groundwater flow direction from south to north-northeast up to high saline sodium-chloride water in aquifer D in the northeast area of the Najd. Environmental isotope analyses of hydrogen and oxygen were conducted to monitor the groundwater dynamics and to evaluate the recharge conditions of groundwater into the Najd aquifers. Results suggest an earlier recharge into these aquifers as well as ongoing recharge takes place in the region down to present day. Mixing of modern and submodern waters was detected by water isotopes in aquifer D in the mountain chain (Jabal) area and along the northern side of the mountain range. In addition, δ2H and δ18O variations suggest that aquifers A, B, and C are assumed to be connected by faults and fractures, and interaction between the aquifers may occur. Low tritium concentrations support the mixing assumption in the recharge area. The knowledge about the groundwater development is an important factor for the sustainable use of water resources in the Dhofar region.  相似文献   

11.
A Triassic carbonate unit has been intensively drained by zinc and lead ore mines and numerous borehole fields since the nineteenth century. Its groundwater recharge has increased due to: pumping of water from boreholes, mining activity, and urbanization. An approach to determine the amounts of the recharge at a variety of spatial scales is presented in the paper. Different methods were used to identify and quantify recharge components on a regional and local scale: mathematical modelling was performed for four aquifers included in an aquifer system, an analytical estimation based on the assumption that an average recharge is equal to the average discharge of the hydrogeological system—for six man-made drainage centres, and the method of water level fluctuation (WLF) was applied in one observation borehole. Results of modelling have been supplemented by observation of environmental tracers (δ18O, δ2H, 3H), noble gases temperatures, and 4Heexc in groundwater. The regional aquifer’s current recharge according to estimations performed by means of modelling varies from 39 to 101 mm/year on average. Depending on the aquifer site the average precipitation ranges from 779 to 864 mm/year. In the confined part of the aquifer average recharge ranges from 26 to 61 mm/year. Within outcrops average recharge varies from 96 to 370 mm/year. Current recharge estimated by the analytical method for man-made drainage centres varies from 158 up to 440 mm/year. High values are caused by different recharge sources like precipitation, induced leakage from shallow aquifers, and water losses from streams, water mains and sewer systems. Pumping of water, mining and municipal activities constitute additional factors accounting for the intensified recharge.  相似文献   

12.
The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l−1), Se (70 μg l−1), Mo (18 μg l−1) and Cu (4.3 μg l−1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001–2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (∼200 L S−1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l−1) are only found near the northern limit of the basin associated with a geological fault.  相似文献   

13.
Identification of hydrogeologic controls on groundwater flowpaths, recharge, and salinization is often critical to the management of limited arid groundwater resources. One approach to identifying these mechanisms is a combined analysis of hydrogeologic and hydrochemical data to develop a comprehensive conceptual model of a groundwater basin. To demonstrate this technique, water samples were collected from 33 discrete vertical zone test holes in the Hueco Bolson aquifer, located within the Trans-Pecos Texas region and the primary water resource for El Paso, Texas, USA and Juárez, Mexico. These samples were analyzed for a suite of geochemical tracers and the data evaluated in light of basin hydrogeology. On the basis of δ2H and δ18O data, two regional recharge sources were recognized, one originating from western mountain-fronts and one from through-flow of the adjacent Tularosa aquifer. Chloride concentrations were strongly correlated with lithologic formations and both Cl/Br and 36Cl ratios suggested the primary chloride source is halite dissolution within a specific lithologic unit. In contrast, sulfur isotopes indicated that most sulfate originates from Tularosa basin Permian gypsum sources. These results yielded a more comprehensive conceptual model of the basin, which suggested that chloride salinization of wells is the result of upconing of waters from the Fort Hancock formation.  相似文献   

14.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   

15.
The Tyrell catchment lies on the western margin of the Riverine Province in the south-central Murray Basin, one of Australia’s most important groundwater resources. Groundwater from the shallow, unconfined Pliocene Sands aquifer and the underlying Renmark Group aquifer is saline (total dissolved solids up to 150,000 mg/L) and is Na-Cl-Mg type. There is no systematic change in salinity along hydraulic gradients implying that the aquifers are hydraulically connected and mixing during vertical flow is important. Stable isotopes (18O+2H) and Cl/Br ratios indicate that groundwater is entirely of meteoric origin and salts in this system have largely been derived by evapotranspiration of rainfall with only minor halite dissolution, rock weathering (mainly feldspar dissolution), and ion exchange between Na and Mg on clays. Similarity in chemistry of all groundwater in the catchment implies relative consistency in processes over time, independent of any climatic variation. Groundwater in both the Pliocene Sands and Renmark Group aquifers yield ages of up to 25 ka. The Tyrrell Catchment is arid to semi-arid and has low topography. This has resulted in relatively low recharge rates and hydraulic gradients that have resulted in long groundwater residence times.  相似文献   

16.
The particular objective of the present work is the development of a new radiocarbon correction approach accounting for palaeoclimate conditions at recharge and hydrochemical evolution. Relevant climate conditions at recharge are atmospheric pCO2 and infiltration temperatures, influencing C isotope concentrations in recharge waters. The new method is applied to the Ledo-Paniselian Aquifer in Belgium. This is a typical freshening aquifer where recharge takes place through the semi-confining cover of the Bartonian Clay. Besides cation exchange which is the major influencing process for the evolution of groundwater chemistry (particularly in the Bartonian Clay), also mixing with the original porewater solution (fossil seawater) occurs in the aquifer. Recharge temperatures were based on noble gas measurements. Potential infiltration water compositions, for a range of possible pCO2, temperature and calcite dissolution system conditions, were calculated by means of PHREEQC. Then the sampled groundwaters were modelled starting from these infiltration waters, using the computer code NETPATH and considering a wide range of geochemical processes. Fitting models were selected on the basis of correspondence of calculated δ13C with measured δ13C. The 14C modelling resulted in residence times ranging from Holocene to Pleistocene (few hundred years to over 40 ka) and yielded consistent results within the uncertainty estimation. Comparison was made with the δ13C and Fontes and Garnier correction models, that do not take climate conditions at recharge into account. To date these are considered as the most representative process-oriented existing models, yet differences in calculated residence times of mostly several thousands of years (up to 19 ka) are revealed with the newly calculated ages being mostly (though not always) younger. Not accounting for climate conditions at recharge (pCO2 and temperature) is thus producing substantial error on deduced residence times. The derived 14C model ages are correlated with He concentrations measured in the groundwater of the aquifer. The obtained residence times show a gap between about 14 and 21 ka indicating possible permafrost conditions which inhibited any groundwater recharge.  相似文献   

17.
Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R2=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm3).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm3)and ground water boundary flow(annually 0.68 Mm3).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.  相似文献   

18.
A detail investigation was carried out to improve the current knowledge of groundwater salinisation processes in coastal aquifers using hydrochemical and isotopic parameters. Data of major ions for 40 wells located in the Salalah plain aquifer, Sultanate of Oman, were collected during pre-monsoon 2004 and analysed. The groundwater changes along the general flow path towards the coast from fresh (EC < 1500 μS/cm), brackish (EC: 1500–3000 μS/cm) and saline (EC > 3000 μS/cm). Results of inverse modeling simulations using PHREEQC show that dissolution of halite may be the main source of Cl and Na in the study area. Ionic delta calculation indicates that the depletion of Na and K and enrichment of Ca and Mg in groundwater were probably attributed to reverse ion exchange reactions. During a sampling campaign conducted in October 2015, 11 groundwater samples were collected for Cl, Br and isotopic analysis (2H/18O). Molar Cl/Br ratios in fresh groundwater were higher than those of seawater, indicating the impact of halite dissolution on the groundwater quality. For saline groundwater, these ratios were less than those of seawater, showing the influence of anthropogenic input from agriculture on the same. Relatively depleted isotopic signature of all groundwater samples show that the monsoon precipitation is the main source of groundwater recharge in the study area.  相似文献   

19.
Recently, Ras Sudr (the delta of Wadi Sudr) area received a great amount of attention due to different development expansion activities directed towards this area. Although Quaternary aquifer is the most prospective aquifer in Ras Sudr area, it has not yet completely evaluated. The present work deals with the simulation of the Quaternary groundwater system using a three-dimensional groundwater flow model. MODFLOW code was applied for designing the model of the Ras Sudr area. This is to recognize the groundwater potential as well as exploitation plan of the most prospective aquifer in the area. The objectives were to determine the hydraulic parameters of the Quaternary aquifer, to estimate the recharge amount to the aquifer, and to determine the hydrochemistry of groundwater in the aquifer. During this work, available data has been collected and some field investigation has been carried out. Groundwater flow model has been simulated using pilot points’ method. SEAWAT has been also applied to simulate the variable-density flow and sea water intrusion from the west. It can be concluded that: (1) the direction of groundwater flow is from the east to the west, (2) the aquifer system attains a small range of log-transformed hydraulic conductivity. It ranges between 3.05 and 3.35 m/day, (3) groundwater would be exploited by about 6.4 × 106 m3/year, (4) the estimated recharge accounts for 3 × 106 m3/year, (5) an estimated subsurface flow from the east accounts for 2.7 × 106 m3/year, (6) the increase of total dissolved solids (TDS) most likely due to dilution of salts along the movement way of groundwater from recharge area to discharge area in addition to a contribution of sea water intrusion from the west. Moreover, it is worth to note that a part of TDS increase might be through up coning from underlying more saline Miocene sediments. It is recommended that: (1) any plan for increasing groundwater abstraction is unaffordable, (2) reliable estimates of groundwater abstraction should be done and (3) automatic well control system should be made.  相似文献   

20.
Travel times and flow paths of groundwater from its recharge area to drinking-water production wells will govern how the quality of pumped groundwater responds to contaminations. Here, we studied the 180 km2 Ammer catchment in southwestern Germany, which is extensively used for groundwater production from a carbonate aquifer. Using a 3-D steady-state groundwater model, four alternative representations of discharge and recharge were systematically explored to understand their impact on groundwater travel times and flow paths. More specifically, two recharge maps obtained from different German hydrologic atlases and two plausible alternative discharge scenarios were tested: (1) groundwater flow across the entire streambed of the Ammer River and its main tributaries and (2) groundwater discharge via a few major springs feeding the Ammer River. For each of these scenarios, the groundwater model was first calibrated against water levels, and subsequently travel times and flow paths were calculated for production wells using particle tracking methods. These computed travel times and flow paths were indirectly evaluated using additional data from the wells including measured concentrations of major ions and environmental tracers indicating groundwater age. Different recharge scenarios resulted in a comparable fit to observed water levels, and similar estimates of hydraulic conductivities, flow paths and travel times of groundwater to production wells. Travel times calculated for all scenarios had a plausible order of magnitude which were comparable to apparent groundwater ages modelled using environmental tracers. Scenario with groundwater discharge across the entire streambed of the Ammer River and its tributaries resulted in a better fit to water levels than scenario with discharge at a few springs only. In spite of the poorer fit to water levels, flow paths of groundwater from the latter scenario were more plausible, and these were supported by the observed major ion chemistry at the production wells. We concluded that data commonly used in groundwater modelling such as water levels and apparent groundwater ages may be insufficient to reliably delineate capture zones of wells. Hydrogeochemical information relating only indirectly to groundwater flow such as the major ion chemistry of water sampled at the wells can substantially improve our understanding of the source areas of recharge for production wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号