首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three years (2008–2011) of direct current measurements from a mooring array deployed at the western Yucatan Channel (defined west of 85.6°W) and along the eastern Campeche Bank captured the main characteristics of the Yucatan and Loop Currents and the eddies associated with them. The array was deployed to provide upstream conditions in support of the Loop Current Dynamics Experiment. A substantial portion (60–80%) of the variance at the mooring sections is related to horizontal shifts of the currents due to meanders and eddies. Time-frequency analysis indicates that the velocity time-series are “event dominated”, with higher variability at low-frequencies (40–100 days or longer periods) but with a substantial contribution at higher frequencies (5–25 days periods) particularly strong from October to March. The vertical structure and time evolution of the eddy kinetic energy in a developing Campeche Bank cyclone suggest baroclinic instability dynamics are relevant for its development. Four Loop Current eddies (Cameron, Darwin, Ekman and Franklin) separated during 2008–2011. Ekman and Franklin were particularly dominated by a cyclone associated with a meander trough of the southward flowing branch of the Loop Current (Donohue et al., 2016a, Donohue et al., 2016b) and weaker Campeche Bank cyclones. For Cameron and Darwin, Campeche Bank cyclonic anomalies appear to be nearly as strong as the ones coming from the eastern side of the Loop Current. Eastward shifts of the Yucatan and Loop Currents observed over the sections appear to be linked to vorticity perturbations propagating from the Caribbean and precede several eddy detachments; their significance for the generation of Campeche Bank cyclones and eddy shedding remains to be determined.Time-series of Yucatan Current transport, vorticity fluctuations and Loop Current northward extension during the 3 deployment periods only depict positive correlation in two of them. Given the wide spectrum of variability, much more data are required to determine if a statistically robust relation exists among these variables. Our results clearly illustrate the complexity of the flow in this region and that it is difficult to single out a dominant mechanism that can explain all Loop Current eddy detachments.  相似文献   

2.
An overview of a new comprehensive observational study of the Loop Current (LC) in the eastern Gulf of Mexico that encompassed full-depth and near-bottom moorings, pressure-equipped inverted echo sounders (PIES) and remote sensing is presented. The study array was designed to encompass the LC from the Campeche Bank to the west Florida escarpment. This overview centers about principal findings as they pertain to mesoscale dynamics. Two companion papers provide in-depth analyses. Three LC anticyclonic eddy separation events were observed with good 3D spatial coverage over the 2½ year extent of the field study; the three separations exhibited similar processes after the LC had extended into the eastern Gulf. Large scale (∼300 km wavelength, 40–60 day periods) southward propagating meanders developed on the eastern side of the LC over deep (∼3000 m) water that were the result of baroclinic instability between the upper layer meandering jet and lower layer cyclones and anticyclones. The lower layer was only highly energetic during relatively short (∼2–3 months) intervals just prior to or during eddy detachments because of baroclinic instability. The steepening of the meanders lead to a pinch-off of LC eddies. The deep lower-layer eddies, constrained by the closed topography of the southeastern Gulf, propagated westward across the detachment zone and appear to assist in achieving separation. Small scale (∼50–100 km, periods ∼10 days) frontal eddies, observed on the western side of the LC along the Campeche Bank slope, decay over the deep water of the northern part of an extended LC, and have little influence on lower layer eddies, the east side meanders and the eddy detachment processes.  相似文献   

3.
We analyzed a 20-year time series (January 1st, 1993 through December 31st, 2012) of Loop Current (LC) surface area derived from satellite altimetry in the eastern Gulf of Mexico to estimate kinematical metrics of this potent flow. On average the LC intrudes to its maximum northward position about 216 ± 126 days after the previous eddy separation; and ∼30 ± 31 days later sheds a large anticyclonic eddy. When the northern extent of the LC intrusion following the previous eddy separation is greater than 27°N, the current retreats very quickly until it sheds another eddy with the entire separation process occurring on the order of 30 days. To first order the change in areal extent of the LC during intrusion into the Gulf occurs at an average rate of 225 km2 day−1, which corresponds to an intrusion velocity of 1.7 cm s−1 of the LC front, and adds Caribbean water to the Gulf at a rate of 2.6 ± 0.7 Sv.  相似文献   

4.
Summary The Gulf of Mexico (GOM) circulation is simulated using the DieCAST ocean model, with a horizontal resolution of 1/12° and 20 vertical layers. The results compare well with observations of both large and small scale features, including Loop Current frontal occlusions associated with frontal eddies. The simulation is carried out without any data assimilation. The frontal eddies tend to be spaced at about 90° intervals around the Loop Current, leading to a Loop Current head shaped like a square with rounded corners. The pattern rotates as the eddies circle the Loop, and frontal eddies elongate as they squeeze through the Florida Strait. Major warm core eddies separate regularly from the Loop Current and propagate to the western GOM. Old warm core eddies in the western Gulf dissipate through bottom drag effects, which also generate cyclonic parasitic eddies. Newly arrived warm core eddies merge with old ones in the western GOM. Recently separated elongated Loop Current eddies can rotate and reattach temporarily to the Loop Current. The barotropic flow component develops eddies between the main separated warm core eddy and the Loop Current due to eastward dispersion, as the main eddy itself propagates westward into the Gulf.With 10 Figures  相似文献   

5.
The meso-scale eddies and currents in the Arabian Sea are analyzed using different satellite observations, Simple Oceanic Data Assimilation (SODA) reanalysis, and Ocean Reanalysis System 4 (ORAS4) from 1993 to 2016 to investigate the impacts of Southwest (SW) Monsoon strength on Somali Current (SC) mesoscale circulations such as the Great Whirl (GW), the Socotra Eddy (SE), the Southern Gyre (SG), and smaller eddies. Increased Ekman pumping during stronger SW monsoons strengthens coastal upwelling along the Somali coast. The Arabian Sea basin-wide anticyclonic circulation and presence of the GW form mesoscale circulation patterns favourable to advection of upwelled waters eastward into the central Arabian Sea. In September, after the SW monsoon winds reach peak strength in July and August, a higher number of discrete anticyclonic eddies with higher ( > 20 cm) sea surface height anomalies develop in strong and normal intensity SW monsoon seasons than weaker SW monsoon seasons.  相似文献   

6.
2C or not 2C?     
Political attention has increasingly focused on limiting warming to 2 °C. However, there is no consensus on both questions “Is the 2 °C target achievable?” and “What should be done with this target that becomes increasingly difficult to achieve?”. This paper aims at disentangling the points of deep uncertainty underlying this absence on consensus. It first gives simple visualizations of the challenge posed by the 2 °C target and shows how key assumptions (on the points of deep uncertainty) influence the answer to the target achievability question. It then proposes an “uncertainties and decisions tree”, linking different beliefs on climate change, the achievability of different policies, and current international policy dynamics to various options to move forward on climate change.  相似文献   

7.
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2–rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg−1yr−1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).  相似文献   

8.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

9.
The local budget of eddy kinetic energy (EKE) for both high-frequency (HF, 2–6 days) and intermediate-frequency (IF, 7–29 days) eddies are evaluated for Northern Hemisphere boreal winter using the 31-year (1979/80–2010/11) NCEP-DOE reanalysis. A new form of EKE equation is used to isolate the kinetic energy generation/destruction due to interactions among eddies of different timescales. The main source of HF EKE is baroclinic conversion that is concentrated in the mid-lower troposphere. Barotropic conversion mainly damps HF EKE and shows positive contributions to IF EKE on the northern flank of the winter-mean tropospheric jet. Interaction between HF and IF eddies acts as a sink for HF EKE and a main source for IF EKE, especially over the eastern ocean basins, confirming the substantial role of synoptic-scale transients in the development of IF phenomena such as atmospheric blocking. Large interannual variability is found for various EKE budget terms. The HF EKE response to El Niño is characterized by a dipole (tri-pole) anomaly over the North Pacific (North Atlantic). Baroclinic conversion is the main driver of the observed changes in HF EKE while barotropic conversion, interaction between HF and IF eddies, and energy flux convergence all play non-negligible roles in determining the final meridional structure of the HF EKE anomalies. Associated with El Niño, IF EKE generally decreases over the North Pacific and increases over the North Atlantic, which mainly result from changes in baroclinic conversion and EKE conversion due to eddy–eddy interactions. The latter is dominated by interaction between IF and LF (low-frequency, 30–90 days) eddies over the North Pacific, and by interactions between HF and IF eddies, and between IF and LF eddies over the North Atlantic.  相似文献   

10.
This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N–80°N, 80°W–40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June–August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.  相似文献   

11.
In this study, empirical orthogonal function was applied to analyze rainfall variability in the Nile basin based on various spatio-temporal scales. The co-occurrence of rainfall variability and the variation in selected climate indices was analyzed based on various spatio-temporal scales. From the highest to the lowest, the cumulative amount of variance explained by the first two principal components (PCs) for any selected size of the spatial domain was obtained for the annual, seasonal, and monthly rainfall series respectively. The variability in the annual rainfall of 1° × 1° spatial coverage explained by only the first PC was about 55% on average. However, this percentage reduced to about 40% on average across the study area when the size of the spatial domain was increased from 1° × 1° to 10° × 10°. The variation in climate indices was shown to explain rainfall variability more suitably at a regional than location-specific spatial scale. The magnitudes and sometimes signs of the correlation between rainfall variability and the variation in climate indices tended to vary from one time scale to another. These findings are vital in the selection of spatial and temporal scales for more considered attribution of rainfall variability across the study area.  相似文献   

12.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

13.
This study incorporates observations from Array of Real-time Geostrophic Oceanography (ARGO) floats and surface drifters to identify seasonal circulation patterns at the surface, 1000 m, 1500 m, and 2000 m in the northwest Indian Ocean, and quantify velocities associated with them. A skill comparison of the Simple Ocean Data Assimilation (SODA) reanalysis output was also performed to contribute to the understanding of the circulation dynamics in this region.Subsurface currents were quantified and validated using the ARGO float data. Surface currents were identified using surface drifter data and compared to the subsurface observations to enhance our previous understanding of surface circulations. Quantified Southwest Monsoon surface currents include the Somali Current (vmax = 179.5 cm/s), the East Arabian Current (vmax = 52.3 cm/s), and the Southwest Monsoon Current (vmax = 51.2 cm/s). Northeastward flow along the Somali coast is also observed at 1000 m (vmax = 26.1 cm/s) and 1500 m (vmax = 12.7 cm/s). Currents associated with the Great Whirl are observed at the surface (vmax = 161.4 cm/s) and at 1000 m (vmax = 16.2 cm/s). In contrast to previous studies, both ARGO and surface drifter data show the Great Whirl can form as early as the boreal Spring intermonsoon, lasting until the boreal Fall intermonsoon. The Arabian Sea exhibits eastward/southeastward flow at the surface, 1000 m, 1500 m, and 2000 m. Quantified Northeast Monsoon surface currents include the Somali Current (vmax = 97.3 cm/s), Northeast Monsoon Current (vmax = 30.0 cm/s), and the North Equatorial Current (vmax = 28.5 cm/s). Southwestward flow along the Somali coast extends as deep as 1500 m.Point-by-point vector and scalar correlations of SODA output to ARGO and surface drifter data showed that surface SODA output and surface drifter data generally produced a strong correlation attributed to surface currents strongly controlled by the monsoons, while subsurface correlations of SODA output and ARGO were mostly insignificant due to variability associated with intermonsoonal transitions. SODA output produced overall smaller velocities than both observational datasets. Assimilating ARGO velocities into the SODA reanalysis could improve subsurface velocity assimilation, especially during the boreal fall and spring when ARGO observations suggest that flow is highly variable.  相似文献   

14.
Conventional surface data and quantitative estimations of precipitation are used to document the occurrence and spatial distribution of severe weather phenomena associated with deep moist convection over southeastern South America.Data used in this paper are 24-hour rainfall, maximum hourly gusts and present weather reports from the surface station network for Argentina to the north of 40°S and cover the period 2000–2005. Hourly rainfall estimated with the CMORPH technique (CPC MORPHing technique, R. J. Joyce et al., 2004) is included in the analysis in order to increase the density of the precipitation database from January 2003 to December 2005. Extreme events are detected by means of a 95th-percentile analysis of the 24-hour rainfall and wind; values greater than 30 mm and 25 m s?1 respectively are considered extreme in the study area. These results are related to the presence of deep convection by considering the 235 K and 218 K cloud shield evolution in Geostationary Operational Environmental Satellite-12 Infrared (GOES-IR) imagery evaluated by the Forecasting and Tracking of Cloud Cluster (FORTRACC) technique. Rainfall above 30 mm day?1 and present convection-related weather events tend to occur in the northeast of the country.Finally, an analysis is made of the relationship between severe phenomena and the location and lifecycle of Mesoscale Convective Systems (MCSs) defined by the 218 K or 235 K levels. According to the reports, favorable locations for severe weather concentrate to the northeast of the cloud shield anvil centroid although most of the cases are found in the northwest. This feature can be seen in systems with anvil areas larger than 250,000 km2 in association to the predominant mid-level wind shear direction from the northwest over the area. Moreover, systems with centers located north of 30°S present a more circular shape while those to the south are more elongated with a NW–SE main axis clearly related to the presence and interaction with frontal zones over the area. Most of the events occur previous to the moment when the systems reach their maximum extension, between 2 and 10 h after the initiation of the system depending on the size of the MCSs.  相似文献   

15.
Hourly data of CO2 fugacity (fCO2) at 8°N–38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August–December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.  相似文献   

16.
Changes in the normal mode energetics of the general atmospheric circulation are assessed for the northern winter season (DJF) in a warmer climate, using the outputs of four climate models from the Coupled Model Intercomparison Project, Phase 3. The energetics changes are characterized by significant increases in both the zonal mean and eddy components for the barotropic and the deeper baroclinic modes, whereas for the shallower baroclinic modes both the zonal mean and eddy components decrease. Significant increases are predominant in the large-scale eddies, both barotropic and baroclinic, while the opposite is found in eddies of smaller scales. While the generation rate of zonal mean available potential energy has globally increased in the barotropic component, leading to an overall strengthening in the barotropic energetics terms, it has decreased in the baroclinic component, leading to a general weakening in the baroclinic energetics counterpart. These global changes, which indicate a strengthening of the energetics in the upper troposphere and lower stratosphere (UTLS), sustained by enhanced baroclinic eddies of large horizontal scales, and a weakening below, mostly driven by weaker baroclinic eddies of intermediate to small scales, appear together with an increased transfer rate of kinetic energy from the eddies to the zonal mean flow and a significant increase in the barotropic zonal mean kinetic energy. The conversion rates between available potential energy and kinetic energy, C, were further decomposed into the contributions by the rotational (Rossby) and divergent (gravity) components of the circulation field. The eddy component of C is due to the conversion of potential energy of the rotational adjusted mass field into kinetic energy by the work realized in the eddy divergent motion. The zonal mean component of C is accomplished by two terms which nearly cancel each other out. One is related to the Hadley cell and involves the divergent component of both wind and geopotential, while the other is associated to the Ferrel cell and incorporates the divergent wind with the rotationally adjusted mass field. Global magnitude increases were found in the zonal mean components of these two terms for the warmer climate, which could be the result of a strengthening and/or widening of both meridional cells. On the other hand, the results suggest a strengthening of these conversion rates in the UTLS and a weakening below, that is consistent with the rising of the tropopause in response to global warming.  相似文献   

17.
This paper evaluates the impacts of climate change to European economies under an increase in global mean temperature at +2 °C and +4 °C. It is based on a summary of conclusions from available studies of how climate change may affect various sectors of the economies in different countries. We apply a macroeconomic general equilibrium model, which integrates impacts of climate change on different activities of the economies. Agents adapt by responding to the changes in market conditions following the climatic changes, thus bringing consistency between economic behaviour and adaptation to climate change. Europe is divided into 85 sub-regions in order to capture climate variability and variations in vulnerabilities within countries. We find that the impacts in the +2 °C are moderate throughout Europe, with positive impacts on GDP in some sub-regions and negative impacts down to 0.1 per cent per year in others. At +4 °C, GDP is negatively affected throughout Europe, and most substantially in the southern parts, where it falls by up to 0.7 per cent per year in some sub-regions. We also find that climate change causes differentiations in wages across Europe, which may cause migration from southern parts of Europe to northern parts, especially to the Nordic countries.  相似文献   

18.
基于1981—2020年日本气象厅(Japanese Meteorological Agency,JMA)再分析资料JRA-55(Japanese 55-year Reanalysis)以及美国国家气候中心(Climate Prediction Center,CPC)卫星降水资料,分析了瞬变涡旋活动特征及其对我国东部夏季降水异常的影响,并对其可能机制展开讨论。研究表明,蒙古国至我国东北和华北地区既是瞬变涡旋活动的活跃区域,也是其输送的大值区域,其中瞬变涡旋对热量和水汽的经向输送占主导地位,是中高纬热量和水汽的重要来源。根据瞬变涡旋经向热量和水汽输送变率的强度确定了瞬变热量和水汽输送的关键区域,分别为(45°~60°N,100°~130°E)和(35°~50°N,100°~120°E),并定义了瞬变热量和水汽指数,其与我国东部夏季降水异常的回归结果表明,瞬变涡旋活动对我国东部夏季降水存在显著影响。中高纬天气尺度瞬变涡旋对热量、水汽和动量的输送异常,通过波流相互作用过程,对平均流形成了反馈,导致季节平均环流、水汽分布和水汽输送的异常,从而在热力、动力和水汽条件的共同作用下引起降水异常。  相似文献   

19.
Present study focuses on examination snowfall variability over Gulmarg and Pahalgam of Kashmir Valley in India during past 31 years (1980–2010). Trends in temperature over the study area is also explored. Minimum and maximum temperature shows increasing trends which is consistent with increase in black carbon column mass density. Increase in black carbon mass density is attributed to urbanization over study area. Trends of minimum temperature is statistically significant. It is reported that snowfall over the Pahalgam shows decreasing trend except for the month of February and January. Pahalgam shows a significant decreasing trend in snowfall of about 48 mm per decade during March. Pahalgam and Gulmarg show seasonal decreasing trends of snowfall of about 15 mm and 1.8 mm per decade, respectively. These decreasing trends in snowfall are consistent with decadal increasing trends of about 1.2 °C and 0.8 °C in minimum temperature over Pahalgam and Gulmarg, respectively. Seasonal snowfall over both the regions shows decreasing trend (insignificant). Results reported in this study show a decrease of about 24.16% ± 9.86% per degree increase in minimum temperature over Pahalgam. Changing characteristics of snowfall in the context of anthropogenic warming present major challenges to the tourism and socioeconomic aspects over the Valley.  相似文献   

20.
The Gulf Stream, one of the strongest currents in the world, transports approximately 31 Sv of water (Kelly and Gille, 1990, Baringer and Larsen, 2001, Leaman et al., 1995) and 1.3 × 1015 W (Larsen, 1992) of heat into the Atlantic Ocean, and warms the vast European continent. Thus any change of the Gulf Stream could lead to the climate change in the European continent, and even worldwide (Bryden et al., 2005). Past studies have revealed a diminished Gulf Stream and oceanic heat transport that was possibly associated with a southward migration of intertropical convergence zone (ITCZ) and may have contributed to Little Ice Age (AD ∼1200 to 1850) in the North Atlantic (Lund et al., 2006). However, the causations of the Gulf Stream weakening due to the southward migration of the ITCZ remain uncertain. Here we use satellite observation data and employ a model (oceanic general circulation model – OGCM) to demonstrate that the Brazilian promontory in the east coast of South America may have played a crucial role in allocating the equatorial currents, while the mean position of the equatorial currents migrates between northern and southern hemisphere in the Atlantic Ocean. Northward migrations of the equatorial currents in the Atlantic Ocean have little influence on the Gulf Stream. Nevertheless, southward migrations, especially abrupt large southward migrations of the equatorial currents, can lead to the increase of the Brazil Current and the significant decrease of the North Brazil Current, in turn the weakening of the Gulf Stream. The results from the model simulations suggest the mean position of the equatorial currents in the Atlantic Ocean shifted at least 180–260 km southwards of its present-day position during the Little Ice Age based on the calculations of simple linear equations and the OGCM simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号