首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Recent advances in analytical instrumentation have made it more feasible to measure isotope ratios of many elements. In particular, modem multicollector-inductively coupled plasma mass spectrometers can measure isotope ratios of many elements with extremely high precision. As a consequence, we can begin to explore biological fractionation in a systematic way and hence develop isotope ratio measurements as a tool to explore the environmental geochemistry of trace metals. In this presentation we will discuss the problems and potential of measuring isotope ratios of zinc in biological samples from systems with non-specific contamination. This will include such issues as the importance of matrix removal to the measurement of valid isotope ratios, mass bias correction and the availability of standard reference materials. Recent data on isotope ratios of Zn in the aquatic invertebrate Mysis relicta will be presented. These animals are of particular interest because they changed their feeding pattern from juveniles to adults. Thus they can be used to test the hypothesis that differences in the isotopic signature of food sources may determine receptor signatures. The data indicate that there are significant differences in signatures at the different life stages. However, the continual uptake and loss of metals over an organism's life span may also lead to fractionation.  相似文献   

2.
The Hakkari nonsulfide zinc deposit is situated close to the southeastern border of Turkey. Here both sulfide and nonsulfide Zn  Pb ores are hosted in carbonate rocks of the Jurassic Cudi Group with features typical of carbonate-hosted supergene nonsulfide zinc mineralization. The regional strike extent of the mineralized district is at least 60 km. The age of the supergene deposit has not been determined, but it is probable that the main weathering happened during Upper Tertiary, possibly between Upper Miocene and Lower Pliocene. The Hakkari mineralization can be compared to other carbonate-hosted Zn–Pb deposits in Turkey, and an interpretation made of its geological setting. The zinc mineral association at Hakkari typically comprises smithsonite and hemimorphite, which apparently replace both sulfide minerals and carbonate host rock. Two generations of smithsonite are present: the first is relatively massive, the second occurs as concretions in cavities as a final filling of remnant porosity. Some zinc is also hosted within Fe–Mn-(hydr)oxides. Lead is present in cerussite, but also as partially oxidized galena. Lead can also occur in Mn-(hydr)oxides (max 30% PbO). The features of the supergene mineralization suggest that the Hakkari deposit belongs both to the “direct replacement” and the “wall-rock replacement” types of nonsulfide ores. Mineralization varies in style from tabular bodies of variable thickness (< 0.5 to 13 m) to cross-cutting breccia zones and disseminated ore minerals in pore spaces and fracture planes. At Hakkari a As–Sb–Tl(≫ Hg) geochemical association has been detected, which may point to primary sulfide mineralization, quite different from typical MVT.  相似文献   

3.
Chao  Xie  Longjun  Xu  Yongjun  Ye  Xiangyang  Li  Shuyun  Wang 《中国地球化学学报》2015,34(2):219-223
Acta Geochimica - Mn–Zn ferrite powders were produced from low-grade manganese ore (LMO) via the chemical co-precipitation method combined with the ceramic method, after the LMO was leached...  相似文献   

4.
Metallogenic Mechanism of the Tianbaoshan Pb—Zn Deposit,Sichuan   总被引:8,自引:3,他引:5  
The Tianbaoshan Pb-Zn deposit in Sichuan Province,exhibiting open-space-filling and /or replacement textures,occurs as being of vine style in the Sinian(Late Proterozoic) carbonate rocks,and is simple in ore composition.A systematic study of lead isotope and rareearth elements reveals that the ore-forming materials were derived from multiple sources.The ultimate source of the sulfur in all stages in seawater sulfate but the reducing mechanisms are different,The carbon was derved from marine carbonate and organic matter,The ore-forming fluid,meteoric in origin,belongs to a Ca^2 -Mg^2 -Cl^--Hco3^- type of weak acidic to alkalic solutions with a salinity of about 5wt% NaCl.The ore was formed at the depth of about 1 km from 150 to 250℃ during the main stage of ore deposition.The heated meteoric water,after extracting ore materials from wall rocks,evolved into ore-forming solution with a low salinity, in which metals were trasported as chloride complexes such as PbCl,ZnCl and ZnCl.The metal-bearing solution moved upward along deep faults to low-pressure zones,where the metal ions reacted with reduced sulfur and were precipitated as sulfied minerals.The textures of the minerals were controlled by the rate at which the reduced sulfur was supplied.  相似文献   

5.
This study deals with the synthesis and characterization of low-silica zeolite X, from calcined Kalabsha kaolin, for adsorption of Zn(Ⅱ) ions from aqueous solution. The synthesis processes is performed under hydrothermal treatment in alkaline solutions. The obtained zeolite samples are characterized using X-ray diffraction, grain size distribution, surface area, and SEM. The critical molar ratios of both SiO2/Al2O3 and K2O/Na2O are about 2.9 and 0.16, respectively. Those ratios are needed to give individual low silica zeolite X in a minimum reaction time. The adsorption capacity of the synthesized products is determined by adsorption of Zn(Ⅱ) ions from solution. The results suggest that the zeolite obtained could be converted to a beneficial product, which will be used in future as an ion exchanger in removing heavy metals from wastewaters.  相似文献   

6.
1 IntroductionThe term“Environmental Geochemical Baseline(EGB)”first appeared in the International Geochemi-cal Mapping Program (IGCP259) and the InternationalGeochemical Baseline Program (IGCP360) of Interna-tional Geography Contrast Program. The defin…  相似文献   

7.
8.
Zhaxikang is one large Sb–Pb–Zn–Ag deposit located in the North Himalaya of southern Tibet. To date, the genesis of this deposit still remains controversial. Here, we present new pyrite Fe and sphalerite Zn isotopic data for the first three stages of mineralization, Fe–Zn isotopic data for Mn–Fe carbonate that formed during the first two stages of mineralization, and Zn isotopic data for the slate wall rocks of the Jurassic Ridang Formation to discuss the genesis of the Zhaxikang deposit. The overall δ56Fe and δ66Zn values range from −0.80‰ to 0.43‰ and from −0.03‰ to 0.38‰, respectively. The δ56Fe values of Mn–Fe carbonates are lighter than those of associated pyrite in six mineral pairs, indicating that the iron carbonates are preferentially enriched in light Fe isotopes relative to pyrite. The sphalerite has lighter δ66Zn values than associated Mn–Fe carbonates in three mineral pairs.The δ56Fe values of pyrite that formed during the first three stages of mineralization gradually increase from stage 1 (−0.33‰ to −0.09‰) through stage 2 (−0.30‰ to 0.19‰) to stage 3 (0.16‰–0.43‰). In comparison, the sphalerite that formed during these stages has δ66Zn values that gradually decrease from stage 1 (0.16‰–0.35‰) through stage 2 (0.09‰–0.23‰) to stage 3 (−0.03‰ to 0.22‰). These data, in conjunction with the observations of hand specimens and thin sections, suggest that the deposit was overprinted by a second pulse of mineralization. This overprint would account for these Fe–Zn isotopic variations as well as the kinetic Rayleigh fractionation that occurred during mineralization. The temporally increasing δ56Fe and decreasing δ66Zn values recorded in the deposit are also coincident with an increase in alteration, again supporting the existence of two pulses of mineralization. The δ56Fe values of the first pulse of ore-forming fluid were calculated using theoretical equations, yielding values of −0.54‰ to −0.34‰ that overlap with those of submarine hydrothermal solutions (−1‰ to 0‰). However, the δ56Fe values of the stage 3 pyrite are heavier than those of typical submarine hydrothermal solutions, which suggests that the second pulse of mineralization was probably derived from a magmatic hydrothermal fluid. In addition, the second pulse of ore-forming fluid has brought some Fe and taken away parts of Zn, which results the lighter δ66Zn values of sphalerite and heavier δ56Fe values of pyrite from the second pulse of mineralization. Overall, the Zhaxikang deposit records two pulses of mineralization, and the overprint by the second pulse of mineralization causes the lighter δ66Zn values and heavier δ56Fe values of modified samples.  相似文献   

9.
Geology of Ore Deposits - Behavior of copper in sulfide-free metasomatic ores of the Pelagonian massif, Republic of North Macedonia has been studied. It is shown that the highest copper activity...  相似文献   

10.
11.
The Jinding Zn–Pb deposit located in the Mesozoic-Cenozoic Lanping Basin of southwest China has ore reserves of ∼ 220 Mt with an average grade of 6.1% Zn and 1.3% Pb. The mineralization is hosted by sandstone in the Early Cretaceous Jingxing Formation and limestone breccia in the Paleocene Yunlong Formation. Mineralization in both types of host rocks is characterized by a paragenetic sequence beginning with marcasite–sphalerite (Stage 1) followed by pyrite–marcasite–sphalerite–galena (Stage 2), and then galena–sphalerite–pyrite–sulfate–carbonate (Stage 3). Pyrite from these stages have different δ33S compositions with pyrite from Stage 1 averaging − 9.6‰, Stage 2 averaging − 8.9‰, and Stage 3 averaging + 0.3‰. Sphalerite hosted by the sandstone has similar δ66Zn values ranging from 0.10 to 0.30‰ in all stages of the mineralization, but sphalerite samples from the limestone breccia-hosted ore show variable δ66Zn values between − 0.03 and 0.20‰. Our data on sphalerite precipitated during the earlier stages of mineralization has a constant δ66Zn value and cogenetic pyrite displays a very light sulfur isotope signature, which we believe to reflect a sulfur source that formed during bacterial sulfate reduction (BSR). The Stage 3 sphalerite and pyrite precipitated from a late influx of metal-rich basinal brine, which had a relatively constant variable δ66Zn isotopic composition due to open system isotope fractionation, and a near zero δ33S composition due to the influence of abiotic thermochemical sulfate reduction from observed sulfates in the host rock.  相似文献   

12.
The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15 ‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah-Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah-Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.  相似文献   

13.
Oxidation zones of ore deposits offer valuable insights into the long-term fate of many metals and metalloids. In this work, we have studied a paleo-acid rock drainage (ARD) system – the oxidation zone of Mississippi-valley type Zn–Pb deposits near Olkusz in southern Poland. The ARD systems exhausted their acid-generating capacity and have come almost to the conclusion of the mineral and geochemical transformations. Primary pyrite, marcasite, galena and sphalerite have been decomposed but the acidity was neutralized by the abundant carbonate host rocks. Zinc is stored in smithsonite, hemimorphite, and Zn-rich sheet aluminosilicates. Some of these minerals formed simultaneously with the oxidation zone but some precipitated in the soils in situ, thus documenting the mobility of Zn, Al, and Si in the soils. Iron oxides are represented mostly by goethite, either well-crystalline or nanocrystalline, as determined by a combination of powder X-ray diffraction, micro-X-ray diffraction, and Mössbauer spectroscopy. Iron oxides bind a substantial amount of arsenic, to a lesser extent also zinc, lead, and cadmium, as shown by electron microprobe analyses and sequential extractions. The X-ray absorption spectroscopy data of the local environment of arsenic in goethite suggest the existence of bidentate mononuclear complex, in addition to the more common bidentate binuclear complex. These results suggest that arsenic is incorporated in the crystal structure of goethite, in addition to adsorbed to the surface of the particles or occluded in the voids and pores. Zinc is bound in goethite as a mixture of tetrahedrally and octahedrally coordinated cations. This study shows that the mature system binds the metals from the primary sulfides relatively strongly. Yet, some release of the metals was observed in this study, either in the laboratory (by sequential extractions) and in nature (e.g., neoformed Zn phyllosilicates). The physical conditions in the oxidation zone and on the surface are largely similar but the metals, to a certain extent, are still mobile in the soils. We may speculate that their mobility near the surface, in the mining waste, may be enhanced by a higher water/rock ratio than in the oxidation zone. This result implies that although the studied material is relatively benign, it still has a potential to cause local environmental problems.  相似文献   

14.
《International Geology Review》2012,54(14):1649-1672
More than 285 carbonate-hosted Zn–Pb deposits occur in Iran, including world-class deposits such as Mehdiabad and Irankuh. Cretaceous carbonates are the most common host rock for these deposits, which are largely concentrated in the Malayer-Esfahan metallogenic belt (MEMB) and the Yazd-Anarak metallogenic belt (YAMB) and, to a lesser extent, in the Central Iranian geological and structural gradual zone and in the Central Alborz metallogenic belt. To erect a broad metallogenic framework for Cretaceous-hosted Zn–Pb resources in Iran, we integrated a geographic information system data base, including all reported deposits and occurrences of this affinity. A significant correspondence between the distribution of these deposits and the main suture zones in the Iran plate is clearly indicated. In addition, stratiform laminated sulphides are common features in most of the Early Cretaceous deposits (e.g. Irankuh, Ravanj, and Anjireh-Tiran), indicating a synsedimentary origin of these deposits. Most of the Cretaceous-hosted orebodies cluster around the Nain-Baft and Sabzevar Cretaceous suture zones and are associated with two major tectonic events: (1) extensive Early Cretaceous back-arc basin formation, producing, for instance, the Nain-Baft mineralized basin and (2) compressive Late Cretaceous closure of the back-arc basins, reflecting the Laramide orogenesis, for example, around the Nain-Baft and Sabzevar sutures in the west and north of the Central Iranian Microcontinent. Related to the back-arc basin formation and evolution, stratiform sedimentary exhalative (SEDEX)-like (e.g. Irankuh, Vejin, Robat, Takiyeh, and stratiform Ravanj) and Irish-type (e.g. Mehdiabad) Zn–Pb ± Ba deposits formed, whereas basin closure and plate collision triggered basinal fluid flow from the suture towards both sides of the MEMB and the YAMB, thus causing the formation of Late Cretaceous-hosted Mississippi Valley-type provinces (e.g. Nakhlak, stratabound Ravanj, Khanjar-e-Reshm, Chahriseh, and Lapalang deposits) on both sides of the Nain-Baft suture zone. These two different geotectonic scenarios and their evolution explain the distribution pattern of most of the Zn–Pb deposits hosted by Cretaceous sedimentary rocks in Iran. On the other hand, the formation of these deposits is not related to the collision between the Arabian and Iran plates (including the Sanandaj-Sirjan zone), inasmuch as no spatial relationship exists between this tectonic event and the distribution pattern of the deposits, which occurs far away from the collision front. The occurrence of SEDEX-like deposits in continental back-arc basins of the Iran plate confirms that an extensional setting favourable for regional Zn–Pb metallogenesis prevailed during the Early Cretaceous. In addition, Irish-type Zn–Pb mineralization took place in carbonate platforms developed on the passive margins that surrounded the Nain-Baft back-arc oceanic basin (e.g. Mehdiabad deposit).  相似文献   

15.
Concentrations of Pb and Zn, plant uptake of these metals, the influence of the plants’ growth on the physicochemical properties and metal concentrations in the tailings of an abandoned 300-year-old mine tailing dam in Zacatecas, Mexico were investigated. Tailings were found to be heavily contaminated, with average levels of 2621 ± 53 and 3827 ± 83 mg/kg for Pb and Zn, respectively (maximum concentrations of 8466 ± 116 and 12,475 ± 324 mg/kg, respectively), exceeding international standards. Though physico-chemical conditions (pH, conductivity, redox potential, moisture, organic matter, nitrate, nitrite, ammonium nitrogen, total nitrogen, phosphorus and sulfates) do not favor the development of vegetation, some plants have adapted to these adverse conditions. Moreover, there was a significant reduction of Pb and Zn concentration in the rhizosphere (between 10–78% for Pb and 18–62% for Zn, depending on plant species). Sporobolus airoides showed average biomass concentrations of 173 ± 2 and 313 ± 6 mg/kg, for Pb and Zn, respectively; which implies a risk for mobility and possible incorporation into the food chain. Barcleyanthus salicifolius, Asclepsias linaria and Cortaderia selloana on the other hand, showed average biomass concentrations of 28 ± 3 and 121 ± 5 mg/kg of Pb and Zn, respectively, thus representing a lower biomagnification risk. The effect of these plants to reduce metal concentrations in the rhizosphere, improve physico-chemical conditions in metal polluted substrates, but with limited metal accumulation in biomass, suggests that they can be evaluated for use in stabilizing metal polluted tailings.  相似文献   

16.
The Bismark deposit (northern Chihuahua, Mexico) is one of several base metal-rich high-temperature, carbonate-replacement deposits hosted in northern Mexico. Previous fluid inclusion studies based on microthermometry and PIXE have shown that the Zn-rich, Pb-poor Bismark deposit formed from a moderate salinity magmatic fluid [Baker, T. and Lang, J.R., 2003. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark Deposit, Mexico. Mineralium Deposita 38(4), 474–495; Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120]. The exact precipitation mechanisms are unclear and may have due to cooling, salinity decrease and wall rock reaction. Furthermore, PIXE data suggested that Pb and Zn concentrations were comparable and inconsistent with the Zn-rich nature of the ore. However, Pb was commonly below the limit of detection for PIXE and the data presented by Baker et al. [Baker, T., van Achterberg, E., Ryan, C.G. and Lang, J.R., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32(2), 117–120] are regarded as the maximum concentrations of Pb in the fluid. In this study new LA ICP MS analysis was carried out on the same fluid inclusion population to compare with the PIXE data in order to constrain the uncertainty related to the Pb data and the new results are used to model possible ore deposition mechanisms. The new laser ablation data reveal overall lower concentrations of Pb in the ore fluid (average value ~ 285 ppm) than previously indicated by PIXE analysis (average value ~ 713 ppm). Chemical modelling using the new laser ablation data tested the following ore deposition processes: 1) cooling; 2) fluid–rock reaction at constant temperature; 3) cooling and simultaneous fluid–rock interaction. Modelling results show that the gangue and ore minerals observed at Bismark are best reproduced by fluid–rock interaction and simultaneous cooling. Results from the simulations strongly indicate that ore deposition was mainly driven by a pH increase due to the neutralization of the acidic ore fluid (pH = 3.9) as the result of the reaction with the limestone. Modelling results also suggest that the deposit likely formed under cooling conditions, but do not support the hypothesis of a temperature decrease as the principal ore-forming process.  相似文献   

17.
18.
《Applied Geochemistry》2002,17(2):69-77
Sulfide precipitation in the context of carbonate-hosted base metal deposits has been previously explained by numerous processes including SO4 reduction in the presence of hydrocarbons. This model has been suggested for numerous deposits although clear criteria to support the model have not been systematically provided. Numerous oil-inclusions are encompassed by fibrous calcite crystals in finely laminated Carboniferous limestone at the base of the Windsor Group, a unit that hosts numerous base metal occurrences in Nova Scotia, particularly the hydrocarbon-rich Jubilee Pb–Zn deposit in Cape Breton Island. Oil from two inclusion-rich samples from this deposit have been characterised by gas chromatography, gas chromatography–mass spectrometry, gas chromatography–isotope ratio mass spectrometry and bulk stable C isotopes. As established in the authors' former publications, the Jubilee deposit is a clear metallogenic case for which the ground preparation and mineralisation stages involved reduction of SO4 by hydrocarbons. Here, the question of potential sources of these hydrocarbons is addressed. It is postulated that the hydrocarbons that were trapped in the sulfide-related calcites at the deposit, correlate with previously characterised oil seeps, and it is demonstrated that their source is not the marine host-carbonates but stratigraphically deeper lacustrine formations of the Horton Group.  相似文献   

19.
20.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号