首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present and discuss the results of simulations of unshielded and shielded neutron background in underground gaseous nuclear recoil detectors for dark matter searches. Also included are measurements of the U and Th content of the rock using an unshielded Ge detector, first studies of neutron veto systems to reject neutron background from detector components, and signal discrimination by varying gas mixtures.  相似文献   

2.
A bulk micromegas micropattern charge readout device has, for the first time, been operated at room temperature in low pressure carbon disulphide vapour. This is a key step opening prospects for use of micromegas readout for large volume negative ion time projection chambers (TPCs) without magnets, such as proposed for directional dark matter detectors and other rare event applications. The dependence of the gain on the amplification field, pressure and drift field has been evaluated. For the available gap size of 75 μm a maximum gain of 1300 ± 120 was achieved in 40 torr vapour with an energy resolution of 22% for 5.9 keV 55Fe X-rays. From a fit to the data, the Townsend coefficient gas parameters A and B have been derived. Operation has also been successfully achieved in xenon:carbon disulphide blends over a range of partial and total pressures. A gain of 890 ± 130 at an energy resolution of 35% has been recorded for a 1:1 blend at a total pressure of 80 torr. Possible improvements are discussed in the context of operation in directional dark matter TPCs as a replacement for multi-wire proportional counters.  相似文献   

3.
Scientific CCDs designed in thick high resistivity silicon (Si) are excellent detectors for astronomy, high energy and nuclear physics, and instrumentation. Many applications can benefit from CCDs ultra low noise readout systems. The present work shows how sub electron noise CCD images can be achieved using digital signal processing techniques. These techniques allow 0.4 electrons of noise at readout bandwidths of up to 10?Kpixels per second while keeping the full CCD spatial resolution and signal dynamic range.  相似文献   

4.
The ionization deposited in a Ge crystal by the scattering of ≈ 1 MeV neutrons on Ge nuclei is measured and its lowenergy behavior is investigated down to recoil energies of 3 keV. This calibration study is fundamental for the discrimination of Weakly Interacting Massive Particles (WIMPs) from the radioactive background. Experimental results are compared with theoretical predictions.  相似文献   

5.
《Astroparticle Physics》2008,28(6):490-499
A bulk micromegas micropattern charge readout device has, for the first time, been operated at room temperature in low pressure carbon disulphide vapour. This is a key step opening prospects for use of micromegas readout for large volume negative ion time projection chambers (TPCs) without magnets, such as proposed for directional dark matter detectors and other rare event applications. The dependence of the gain on the amplification field, pressure and drift field has been evaluated. For the available gap size of 75 μm a maximum gain of 1300 ± 120 was achieved in 40 torr vapour with an energy resolution of 22% for 5.9 keV 55Fe X-rays. From a fit to the data, the Townsend coefficient gas parameters A and B have been derived. Operation has also been successfully achieved in xenon:carbon disulphide blends over a range of partial and total pressures. A gain of 890 ± 130 at an energy resolution of 35% has been recorded for a 1:1 blend at a total pressure of 80 torr. Possible improvements are discussed in the context of operation in directional dark matter TPCs as a replacement for multi-wire proportional counters.  相似文献   

6.
We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron–ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.  相似文献   

7.
We examine electron and nuclear recoil backgrounds from radioactivity in the ZEPLIN-III dark matter experiment at Boulby. The rate of low-energy electron recoils in the liquid xenon WIMP target is 0.75 ± 0.05 events/kg/day/keV, which represents a 20-fold improvement over the rate observed during the first science run. Energy and spatial distributions agree with those predicted by component-level Monte Carlo simulations propagating the effects of the radiological contamination measured for materials employed in the experiment. Neutron elastic scattering is predicted to yield 3.05 ± 0.5 nuclear recoils with energy 5-50 keV per year, which translates to an expectation of 0.4 events in a 1 yr dataset in anti-coincidence with the veto detector for realistic signal acceptance. Less obvious background sources are discussed, especially in the context of future experiments. These include contamination of scintillation pulses with Cherenkov light from Compton electrons and from β activity internal to photomultipliers, which can increase the size and lower the apparent time constant of the scintillation response. Another challenge is posed by multiple-scatter γ-rays with one or more vertices in regions that yield no ionisation. If the discrimination power achieved in the first run can be replicated, ZEPLIN-III should reach a sensitivity of ∼1 × 10−8pb · yr to the scalar WIMP-nucleon elastic cross-section, as originally conceived.  相似文献   

8.
We point out that even a very conservative estimate for the uncertainty of the effective Higgs-nucleon coupling yields nuclear recoil cross sections for perturbative Higgs portal dark matter models which will be probed by DEAP-3600 and XENON1T within two years of observations.  相似文献   

9.
The 85-cm telescope at Xinglong station is a prime focus system that operates well with high science outputs. The telescope has been upgraded since 2014 with a new corrector, and new filters and camera, which are provided by Beijing Normal University. The filter set is the Johnson-Cousins U BV RI system. We report the test results of the new system including bias, dark current, linearity, gain and readout noise of the CCD camera. Then we derive accurate instrumental calibration coefficients in U BV RI bands with Landolt standard stars during photometric nights. Finally, we give the limiting magnitudes with various exposure times and signal-to-noise ratios for observers as references.  相似文献   

10.
Anisotropic emission of gravitational waves during the merger of black holes induces a recoil velocity on the centre of mass of the binary and the final merger product can then be ejected from its host galaxy. We consider ejected black holes which stay on bound orbits around their host haloes. A recoiled black hole which moves on an almost radial orbit outside the virial radius of its central galaxy, in the cold dark matter background, reaches its apapsis in a finite time. Due to small dark matter velocity dispersion at high redshifts and also the small black hole velocity near the apapsis passage a high-density wake forms around these black hole. Gamma-ray emission can result from the enhancement of dark matter annihilation in these wakes. The diffuse high-energy gamma-ray background from the ensemble of such black holes in the Hubble volume is also evaluated.  相似文献   

11.
The UVIS dark matter detector, proposed by Spooner and Smith (Phys. Lett. B 314 (1993) 430), consists of < 1000 ppm Tl doped NaI scintillator operated at 100-200 K, with measurement of UV and visible scintillation components used to discriminate between electrons (gammas) and Na or I recoils. Presented here are results of measurements of the gamma/nuclear recoil discrimination power of a Kyropolous NaI (0.5 ppm Tl) UVIS test detector operated at 160 K, with monoenergetic neutrons used to induce nuclear recoils via elastic scattering. Defining the statistical gain factor for N events as , the coefficient Cm was measured as a function of photoelectron pulse height. At 40 photoelectrons Cm was found to be 0.5 (corresponding to 90% rejection of gammas with 20% loss of neutron events). The scintillation efficiency for Na and I recoils relative to electrons was also measured at 160 K and found to be 35 ± 5% for Na recoils and 10 ± 2% for iodine.  相似文献   

12.
The ZEPLIN-III experiment is operating in its second phase at the Boulby Underground Laboratory in search of dark matter WIMPs. The major upgrades to the instrument over its first science run include lower background photomultiplier tubes and installation of a plastic scintillator veto system. Performance results from the veto detector using calibration and science data in its first six months of operation in coincidence with ZEPLIN-III are presented. With fully automated operation and calibration, the veto system has maintained high stability and achieves near unity live time relative to ZEPLIN-III. Calibrations with a neutron source demonstrate a rejection of 60% of neutron-induced nuclear recoils in ZEPLIN-III that might otherwise be misidentified as WIMPs. This tagging efficiency reduces the expected untagged nuclear recoil background from neutrons during science data taking to a very low rate of ?0.2 events per year in the WIMP acceptance region. Additionally, the veto detector provides rejection of 28% of γ-ray induced background events, allowing the sampling of the dominant source of background in ZEPLIN-III - multiple scatter γ-rays with rare topologies. Since WIMPs will not be tagged by the veto detector, and tags due to γ-rays and neutrons are separable, this population of multiple scatter events may be characterised without biasing the analysis of candidate WIMP signals in the data.  相似文献   

13.
The quenching factor of cesium and iodine nuclei recoiling in a CsI(Tl) scintillator is measured by scattering of 3 to 6 MeV neutrons. This factor increases when recoil energy decreases, from 7% at 150 keV to 15% at 25 keV. This relatively high efficiency could be useful in experiments dealing with very low recoil energies like the WIMP direct detection. These values are well explained by the Birks model. Pulse shape discrimination between electron and nuclei recoils is also investigated. Results are sufficiently good to allow a significant statistical rejection of radioactive background. This rejection capability is shown to be better than for NaI(Tl), at the same electron equivalent energy.  相似文献   

14.
Photon counting strategies with low-light-level CCDs   总被引:1,自引:0,他引:1  
Low light level charge-coupled devices (L3CCDs) have recently been developed, incorporating on-chip gain. They may be operated to give an effective readout noise of much less than one electron by implementing an on-chip gain process allowing the detection of individual photons. However, the gain mechanism is stochastic and so introduces significant extra noise into the system. In this paper we examine how best to process the output signal from an L3CCD so as to minimize the contribution of stochastic noise, while still maintaining photometric accuracy.
We achieve this by optimizing a transfer function that translates the digitized output signal levels from the L3CCD into a value approximating the photon input as closely as possible by applying thresholding techniques. We identify several thresholding strategies and quantify their impact on the photon counting accuracy and the effective signal-to-noise ratio.
We find that it is possible to eliminate the noise introduced by the gain process at the lowest light levels. Reduced improvements are achieved as the light level increases up to about 20 photon pixel−1 and above this there is negligible improvement. Operating L3CCDs at very high speeds will keep the photon flux low, giving the best improvements in signal-to-noise ratio.  相似文献   

15.
暗物质空间探测器BGO量能器的读出设计   总被引:2,自引:0,他引:2  
暗物质空间探测器是中国科学院紫金山天文台暗物质空间天文实验室提出的,其目的是为了探测暗物质粒子湮灭可能产生的高能电子和伽玛粒子.整个探测器主要由BGO(Bismuth germanate,锗酸铋)高能图像量能器和闪烁体径迹探测器构成.探测器的能量探测范围将覆盖10 GeV到10 TeV的高能电子和伽玛粒子,其中高能粒子的能量主要沉积在BGO量能器中.为了验证探测器方案,紫金山天文台暗物质空间天文实验室设计了暗物质空间探测器BGO量能器的读出系统原型,并对其进行了初步的测试.  相似文献   

16.
Data are presented from the DRIFT-IId detector operated in the Boulby Underground Science Facility in England. A 0.8 m3 fiducial volume, containing partial pressures of 30 Torr CS2 and 10 Torr CF4, was exposed for a duration of 47.4 live-time days with sufficient passive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low-level background from the decay of radon daughters attached to the central cathode of the detector. However, charge from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these Radon Progeny Recoil events while still retaining sensitivity to fiducial-volume nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 1.8 pb for a WIMP mass of 100 GeV/c2. This sensitivity was achieved without compromising the direction sensitivity of DRIFT.  相似文献   

17.
The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS dark matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions of low energy photons or electrons near the surface of the crystal, and is somewhat reduced by applying a higher charge-collecting inverse bias voltage (−6 V instead of −2 V) to the Ge diode. Despite this contamination, more than 98% of the background can be rejected while retaining 50% of the signal. This yields a conservative upper limit of 0.7 event day−1 kg−1 keVrecoil−1 at 90% confidence level in the 15–45 keV recoil energy interval; the present sensitivity appears to be limited by the fast ambient neutrons. Upgrades in progress on the installation are summarized.  相似文献   

18.
19.
The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee.In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be <1.4×107 (90% C.L.) for energies between 43–86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag.The combined data set contains 1.23 × 108 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is <2.7×108 (90% C.L.) between 44–89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale.We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 1010 for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 1046 cm2, assuming negligible contribution from nuclear recoil backgrounds.  相似文献   

20.
The Lulin One-meter Telescope at Lulin Observatory in Taiwan started open-use observations in January 2003. In order to evaluate the performance of the CCD photometric system, the characteristics and quality of the site, we obtained data of photometric standards as well as calibration data from February to November 2004. We report here the results of our analysis including the gain, readout noise, dark current and linearity of the CCD camera, and transformation coefficients, total throughputs, night sky brightnesses and limiting magnitudes for UBVRI bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号