首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
安丘-莒县断裂(F_5)为郯庐断裂带中段东地堑内最新活动断裂。近年来,F_5江苏段研究成果丰硕,发现不同地段普遍存在全新世活动性,运动方式以右旋走滑兼挤压逆冲为主。以往研究未讨论过F_5在淮河以南安徽境内的延伸情况以及进一步的活动性问题。文中选取与F_5江苏段线性影像特征延伸一致的淮河南岸郯庐紫阳山段作为突破口,通过遥感影像解译、地质地貌调查和探槽开挖,初步得到以下认识:1)紫阳山段线性构造地貌特征清晰,断层发育于浮山至紫阳山一线的中生代红色砂岩隆起边缘缓坡,为安丘-莒县断裂(F_5)过淮河后的南延部分;2)朱刘探槽开挖揭示,该段错断了晚更新世晚期黏土层,晚更新世晚期—全新世早期黑色黏土层受断层活动影响沿断面灌入、填充,形成黑色断层条带及黑土充填楔,表明断层最新活动时代达全新世早期;3)朱刘探槽开挖揭示,该段第四纪以来存在至少3次古地震事件,第1次古地震事件推测年代为第四纪早、中期,第2次古地震事件年代为20.10~13.46ka BP,第3次古地震事件年代为(10.15±0.05)~(8.16±0.05)ka BP。上述研究成果弥补了对郯庐断裂带安徽段晚第四纪活动性认识的不足,为安徽省的地震监测和震害防御工作提供了基础数据。  相似文献   

2.
郯庐断裂带安徽省内段落属于该断裂带的南段,断裂构造复杂,总体上断层活动性要弱于断裂带的山东、江苏段。近年来笔者多次在苏皖交界地区开展野外地质地貌调查,发现淮河南北两侧的地形地貌存在较大差异。本研究以淮河以南的郯庐断裂带东支断裂明光段为探查重点,在明光紫阳山北侧跨断层开挖地质探槽。探槽(Tc1)显示断层表现为逆冲、张裂等活动形式,且断层向上延伸错动晚第四纪地层;结合年代样品测试结果,表明该段断层晚第四纪以来有较强的活动,最新活动时代可达晚更新世-全新世早期;探槽揭露的断层表现出多种活动形式,显示了明光段断层活动的多期次性和区域构造应力场的复杂性。  相似文献   

3.
郯庐断裂带淮河南到女山湖段晚第四纪以来的新活动   总被引:1,自引:0,他引:1  
以郯庐断裂带淮河南到女山湖段晚第四纪以来是否具有新活动为主要研究目标,通过遥感影像资料解译及地表反复调查,选择构造地貌显著地段开挖探槽,识别和记录其变形形态,分析其活动习性,定向采集新活动变形物质,在保持原态基础上磨制定向薄片,并进行微观构造分析论证。研究表明,断裂沿线线状构造地貌清晰,横跨断裂带的3个探槽均揭示出晚第四纪以来活动痕迹,断裂最新错断了晚更新世-全新世地层;滑移方式多表现为粘滑,典型表现为断层陡坎、楔状堆积、断层和充填裂缝等,总体显示为脆性高速变形特征,属于史前地震遗迹。上述认识部分得到微观分析证实。文中还初步探讨了淮河南北郯庐断裂最新活动特征的异同点及其可能的原因。  相似文献   

4.
以郯庐断裂带苏皖交界段淮河以南段为重点,开展地形地貌、断层露头等调查工作,并开挖地质探槽,发现该段断层错断了中更新世地层。对比淮河以北段的断裂活动特征,认为郯庐断裂带苏皖交界段在淮河以南虽然第四纪仍有过活动,但其活动强度较弱,而该地区其他方向的断裂截切作用是其活动性减弱的一个可能原因。  相似文献   

5.
郯庐断裂带中段最新活动的安丘—莒县断裂(命名为F5断裂)为中国东部地区重要的地震活动断裂。 已有研究表明, F5断裂向南已延伸进入安徽境内的淮河—女山湖之间, 但该段的具体几何展布还存在以下问题未解决: 一是F5断裂以东的紫阳山东侧断裂是否属于F5断裂分支; 二是F5断裂向南是否延伸至女山湖北岸。 为解决以上问题, 本次工作基于遥感解译、 地质地貌调查、 探槽开挖及断错地层年代样品测试等方法, 对紫阳山东侧断裂及女山湖北岸一带断裂开展了研究。 结果表明, 紫阳山东侧断裂发育时代较老, 在早、 中更新世发生过强烈逆冲挤压运动, 晚第四纪以来不活动, 该断裂不属于F5断裂分支; 郯庐断裂带在女山湖北岸上詹村一带断错了晚更新世地层, 该处断裂为F5断裂向南的延伸部分; F5断裂已完全贯穿于淮河—女山湖之间, 断层迹线单一、 连续, 段落总长度约20 km。 文中还讨论了F5断裂向南应该终止于女山湖至明光市一带, 断裂终止受区域古老构造格局控制, 表明该断裂既有新生性又有继承性。  相似文献   

6.
郯庐断裂带苏皖交界段处于断裂中段与南段的过渡区,断层新活动较为复杂。近几年的研究成果显示,在淮河南侧浮山、紫阳一带断层晚第四纪仍有较强活动,该断层向S至女山湖的活动情况如何、晚第四纪活动是否延伸至女山湖,是值得关注的问题。在明光女山湖北侧六谷堆村东开挖的地质探槽揭示了宽2~4m的断层变形带,带内沿断层卷入多个棕黄色黏土团;断层的新活动错动了上覆晚更新世黏土层,断层面延伸至地表呈“通天”状,地层年代数据表明其最新活动时代至少为晚更新世晚期;断层面发育的擦痕及阶步显示断层经历过逆右旋活动。以上成果表明,郯庐断裂带东支最为活动的断层晚第四纪的活动向S延伸至明光女山湖。泗洪—明光是郯庐断裂带中—南段的构造“节点”,多个断层剖面存在楔状土、正断、黏土团等现象,显示以逆走滑为主要运动方式的断层在地表局部存在丰富的伴生现象,而产生这些现象的原因可能与断层在不同时、空所受的区域复杂应力及其变化有关。  相似文献   

7.
郯庐断裂带淮河以南段第四纪地层分布不均,断层新活动研究存在一定的困难。在苏皖交界地区多次实地踏勘发现,淮河南侧的安徽浮山段断层发育于NNE向条形岗地的边缘,对第四纪地层和地貌仍有一定的控制作用。在浮山段开挖的三塘探槽、浮山南剖面等均显示,断层错断了晚第四纪地层,表明该段断裂晚更新世以来仍存在较强的活动。综合地层年代样品测试结果,浮山段断层最新活动时代可达全新世早期,最近1次古地震事件发生在(10.6±0.8)~(7.6±0.5)ka BP之间。探槽及剖面揭露的断层表现为正右旋滑动特征,这或是断层所在区域局部构造应力场复杂性的表现。  相似文献   

8.
目前对于郯庐断裂带新沂—泗洪段的研究相对薄弱,通过对该段北侧构造地貌条件较好的嶂山段开展研究,充实了该段的晚第四纪活动证据与古地震事件序列。嶂山段总体位于宿迁市晓店镇至井头乡一带,长约7km。构造地貌研究显示嶂山段晚第四纪活动具有逆冲右旋的运动性质。古地震探槽研究揭示:1)郯庐断裂在该段具有分期活动特征,上新世期间为拉张正断,第四纪以来表现为逆冲;2)1次古地震发生在15.12~11.82ka BP;3)断裂最新活动年代可能为3500a BP左右。综合前人的研究成果,目前郯庐断裂带新沂—泗洪段已揭露的古地震事件年代序列可归纳为:9.6×10~4a以前,晚更新世早、中期,15.12~11.82ka BP,(11.76±0.05)~(10.53±0.05)ka BP,(10.15±0.05)~(8.16±0.05)ka BP,4960~3510a BP。  相似文献   

9.
<正>郯庐断裂带苏皖段活动特征存在一定的差异性,特别是苏皖交界的泗洪—明光一带,作为郯庐断裂带上的一个"节点",其活动特征研究尤为重要。郯庐断裂带大红山段位于江苏泗洪县峰山乡,南滨淮河(图1)。郯庐断裂带在大红山一带表现为断续延伸、呈北北东向展布的低矮山丘或岗地地貌。为了深化对该段断层活动性的分析和认识,在靠近淮河北岸的峰山乡大红山的西南侧开挖探槽(TC1),TC1走向95°,长  相似文献   

10.
<正>为揭示郯庐断裂带在嶂山段的新活动特征,在该段进行了构造地貌调查与古地震探槽开挖。嶂山段位于宿迁晓店镇至井头乡一带,段落长约7 km,走向NE10°,倾角60°~80°。该段为郯庐断裂带F5断层通过地段。以梁庄为界可分为南北两亚段,北亚段沿着嶂山东麓发育,构成山体与平原的分界断层,表现为白垩系青山组地层逆冲于晚更新统地层之上;南亚段发育于嶂山南侧的平原地带,地貌上表现为断续延伸的北东向线性陡坎与凹槽,断裂出露于上新统宿迁组与晚更新统地层之间。在南亚段断层陡坎下方开挖古  相似文献   

11.
The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.  相似文献   

12.
Introduction The Tanlu fault zone, the largest active structure in the eastern region of China, is character-ized by right lateral strike-slip movement with dip-slip component in the Quaternary; it shows great significance for the modern seismicity (FANG et al, 1976; Institute of Geophysics, China Earthquake Administration, 1987; GAO et al, 1980; MA, 1987; LI, 1989; CHAO et al, 1995). The Tanlu fault zone is the boundary between the Jiaoliao block and the North China Plain block of …  相似文献   

13.
莱州湾海域郯庐断裂带活断层探测   总被引:21,自引:0,他引:21       下载免费PDF全文
利用浅地层剖面仪对郯庐断裂带莱州湾段进行了活断层探测,发现郯庐断裂带主干断裂在第四纪晚期以来具有明显的活动,继承了晚第三纪以来的主要构造活动特点,仍是这一区域的主导性构造. 西支KL3断裂由多条高角度正断裂组成,最新活动时代为晚更新世晚期至全新世早期,受到一系列错断晚更新世晚期沉积的北东或近东西向断裂的切割;东支龙口断裂由两段右阶斜列的次级断层组成,沿断裂带不但有明显的晚第四纪断错活动,而且还发育北北东向晚第四纪生长褶皱,表现出明显的晚更新世晚期至全新世活动特征. 在山东陆地区也发现了与龙口断裂相对应的安丘——莒县断裂,安丘段由一系列右阶斜列的次级断层组成. 从安丘向北至莱州湾凹陷,郯庐断裂带东支活断层构成了一条右旋单剪变形带,每一个次级活断层段相当于带内理论上次级压剪面,在第四纪晚期以来仍以右旋走滑活动为主要特征.   相似文献   

14.
Anqiu-Juxian Fault(F5) is the latest active fault in the eastern graben of the middle segment of the Tanlu fault zone. In recent years, the research results of F5 in Jiangsu Province are abundant, and it is found that Holocene activity is prevalent in different segments, and the movement pattern is dominated by dextral strike-slip and squeezing thrust. The Anhui segment and the Jiangsu segment of the Tan-Lu fault zone are bounded by the Huaihe River. Previous studies have not discussed the extension and activity of F5 in the south of the Huaihe River in Anhui Province. This paper chooses the Ziyangshan segment of Tanlu fault zone in the south of the Huaihe River as the breakthrough point, which is consistent with the linear image feature of extension of F5 in Jiangsu Province. Through the remote sensing image interpretation, geological and geomorphological investigation and trench excavation, we initially get the following understanding:(1)The linear structural features of the Ziyang segment are clear, and the fault is developed on the gentle slope of the Mesozoic red sandstone uplift along the Fushan-Ziyangshan, which is the southern extension of the Anqiu-Juxian Fault(F5); (2)The excavation of the Zhuliu trench reveals that the late Pleistocene clastic layers are interrupted, and the late late Pleistocene to early Holocene black clay layers are filled along the fault to form black fault strips and black soil-filled wedges, indicating that the latest active age of the fault is early Holocene; (3)The excavation of Zhuliu trench reveals that there are at least 3 paleo-earthquake events since the Quaternary, the first paleo-seismic event is dated to the early and middle Quaternary, and the 2nd paleo-seismic event is 20.10~13.46ka BP, the age of the third paleo-seismic event is(10.15±0.05)~(8.16±0.05)ka BP. These results complement our understanding of the late Quaternary activity in the Anhui segment of the Tanlu fault zone, providing basic data for earthquake monitoring and seismic damage prevention in Anhui Province.  相似文献   

15.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

16.
The relationship between the latest activity of active fault and seismic events is of the utmost importance. The Tan-lu fault zone in eastern China is a major fault zone, of which the active characteristics of the segments in Jiangsu, Shandong and Anhui has been the focus of research. This study takes the Dahongshan segment of the Tanlu Fault in Sihong County as the main research area. We carried out a detailed geological survey and excavated two trenches across the steep slope on the southwest side of the Dahongshan. Each trench shows fault clearly. Combining the comparative analysis of previous work, we identified and cataloged the late Quaternary deformation events and prehistoric earthquake relics, and analyzed the activity stages and behavior of this segment. Fault gonge observed in the trench profiles shows that multiple earthquake events occurred in the fault. The faulting dislocated the Neogene sandstone, black gravel layer and gray clay layer. Brown clay layer is not broken. According to the relations of dislocated stratums, corresponding 14C and OSL samples were collected and dated. The result indicates that the Dahongshan segment of the Tanlu Fault has experienced strong earthquakes since the late Quaternary. Thrust fault, normal fault and strike-slip fault are found in the trenches. The microscopic analysis of slices from fault shows that there are many stick-creep events taking place in the area during the late Quaternary. Comprehensive analysis shows that there have been many paleoearthquakes in this region since the late Quaternary, the recent active time is the late Pleistocene, and the most recent earthquake event occurred in(12~2.5ka BP). The neotectonic activity is relatively weak in the Anhui segment(south of the Huaihe River)of Tanlu fault zone. There are difficulties in the study of late Quaternary activity. For example, uneven distribution of the Quaternary, complex geological structure, larger man-made transformation of surface and so on. The progressive research may be able to promote the study on the activity of the Anhui segment of Tanlu fault zone.  相似文献   

17.
Taking the Huaihe to the Nvshanhu segment of the Tanlu (Tancheng-Lujiang) fault zone as the main research target to explore whether there has been new activity since the late Quaternary, and based on the interpretation of remote sensing images and repeated surface investigations, we excavated trenches at the sections where the tectonic landform is significant, identified and recorded the deformation patterns of the fault and analyzed the activity behavior. Samples of new activity and deformation were collected and oriented slices were ground based on the samples'' original state to make the micro structural analysis and demonstration. All of the above research shows very clear linear tectonic geomorphology along the fault, three trenches across the fault zone all revealed new deformation traces since late Quaternary. The latest stratum dislocated by the fault is the late Quaternary and Holocene. The main slip mode is stick slip, as represented typically by fault scarps, wedge accumulation, the faults and the filled cracks and so on. In general, it shows the characteristics of brittle high-speed deformation and belongs to the prehistoric earthquake ruins. The above understanding was confirmed partially by microscopic analysis. In addition, the similarities and differences and the possible reasons for the characteristics of the latest activities of the Tancheng-Lujiang fault zone in the north and south of the Huaihe River regions are also discussed in this paper.  相似文献   

18.
郯庐断裂带池河段的新活动   总被引:3,自引:0,他引:3       下载免费PDF全文
姚大全  刘加灿 《地震学报》2004,26(6):616-622
对郯庐断裂带池河段进行了遥感影像判读,地震地质实地调查,钻孔探测资料分析,样品采集测试,以及结合地震活动特征分析和微观构造解析. 结果表明,郯庐断裂带池河段晚第四纪期间仍具有粘蠕滑交替的变形活动,最新活动方式以蠕滑活动为主.   相似文献   

19.
Introduction The southern part of the Tanlu fault zone, especially the sections to the south of the Huaiheriver, has been taken as the sections that have been inactive or inert since Late Pleistocene (Insti-tute of Geology, State Seismological Bureau, 1987; CHAO, et al, 1999; SHI, et al, 2003). Thepresent authors have found the structural features that are inconsistent with the previous viewpointduring their researches. The new knowledge about active features along the Tanlu fault …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号