首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal chemistry of volcanic allanites from both the Youngest Toba Tuff (YTT), Sumatra, Indonesia and SK100 volcanic ash beds (SK100-VAB), Niigata, Japan has been examined by electron microprobe analysis (EMPA), Fourier-transform infrared spectroscopic analysis (FTIR), and single-crystal structure analysis. In the FTIR study, based on the Diamond ATR accessory, YTT and SK100- VAB allanites were observed to have different OH contents, respectively: the former has 0.64 wt% H2O (OH: 0.40 apfu.), while the latter has 1.65 wt% H2O (OH: 1.00 apfu.). The crystal structures of these two allanites have been refined to individual R indices (3.64 and 4.25) based on 1350 observed reflections (|Fo| > 4sig|Fo|) measured using a single-crystal diffractometer with MoKα X-radiation. The OH-poor YTT allanite has a shorter b axis, a longer c axis, and larger β value than the relatively OH-rich SK100-VAB one. The bond valence sums of O4 (accepter oxygen for H atom) and O10 (donor oxygen for H atom) are 1.962 and 1.709 v.u. for YTT allanite (valence sum: 3.671 v.u.) and 1.754 and 1.271 v.u. for SK100-VAB one (valence sum: 3.025 v.u.). The difference from the ideal total bond valence value (4.00 v.u.) of O4 and O10 in YTT allanite (0.33 v.u.) is smaller than that in SK100-VAB (0.98 v.u.). These difference values are also broadly consistent with the corresponding differences in OH content between the YTT (OH: 0.40 apfu.) and SK100-VAB allanites (OH: 1.00 apfu.) determined by FTIR- ATR. Chemical analyses, FTIR-ATR and crystal structure refinement of YTT and SK100-VAB allanites yielded the following crystal chemical formula: YTT: (Ca0.83Mn2+ 0.06Fe2+ 0.11)(La0.24Ce0.32Pr0.04Nd0.11Sm0.02Th0.04Ca0.21)(Al0.73Fe3+ 0.19Ti0.08)(Al0.89Fe3+ 0.11)(Fe2+ 0.22Fe3+ 0.62Mg0.16)(SiO4)Si2O7O1.6(OH)0.4, SK100-VAB: (Ca0.81Fe2+ 0.13Mn2+ 0.06)(La0.22Ce0.34Pr0.05Nd0.13Sm0.02Th0.02Ca0.22)(Al0.76Fe3+ 0.19Ti0.05)Al1.00(Fe2+ 0.73Fe3+ 0.17Mg0.10)(Si0.96Al0.04O4)Si2O7O(OH). Therefore, it is concluded that welding of the Youngest Toba Tuff caused the following post-crystallization changes to occur in YTT allanite: oxidation of Fe2+ to Fe3+, release of H2, and the concomitant replacement of OH? by O2?. These oxidation and dehydrogenation processes advanced during the welding to thereby produce oxyallanite. Oxyallanite had been reported only in laboratory studies where it was produced by heating natural allanite. Our report on natural oxyallanite suggests that it may be present in other welded silicic volcanic rocks as well.  相似文献   

2.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

3.
The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H el 0 (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: ?5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), ?5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 0.1 3+ )[Si3.9Al0.1O10](OH)2 (II), ?5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 0.1 3+ ) [Si3.7Al0.3O10](OH)2 (III), and ?6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.  相似文献   

4.
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 0.5 2+ Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 1.9 2+ Fe 0.2 3+ )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 1.6 2+ Fe 0.2 3+ )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 1.8 2+ Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 1.3 3+ Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 1.3 2+ Fe 0.9 3+ Al0.2) [Si6.4Al1.6O22](OH)2 (?10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.  相似文献   

5.
Samples of a garnet granulite from the mafic border units of the Lake Chatuge, Georgia alpine peridotite body were found to contain lamellar intergrowths of a pargastic amphibole in augite having the typical appearance of an exsolution feature. Single crystal X-ray diffraction, optical, electron microprobe and conventional and analytical electron microscopic studies have provided data limiting the compositions and structures of the coexisting phases. Individual lamellae of both materials are from 0.5 to 2.0 m in width with the lamellar interface parallel to {0 1 0}. The formulae of the minerals, as determined by a combination of electron microprobe and analytical electron microscopy, are (Na0.1Ca1.0Mg0.6Fe3+ 0.3)(Si1.8Al0.2)O6 for the pyroxene and Na0.7Ca1.9(Mg2.1Fe2+ 1.4Fe3+ 0.5Ti0.1Cr0.1Al0.8)(Si5.9Al2.1) O22(OH)2 for the amphibole. Several other studies have described intergrowths similar to those observed in this work, in general favoring exsolution as the formation mechanism for the intergrowths. In the Lake Chatuge samples however, replacement of pyroxene by amphibole is in part indicated by continuous gradation of amphibole lamellae into amphiboles rimming the clinopyroxenes.Contribution No. 368 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan  相似文献   

6.
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.  相似文献   

7.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   

8.
The Fe-rich Li-bearing magnesionigerite-6N6S occurs in the Xianghualing tin-polymetallic ore field, Linwu County, Hunan Province, Peoples Republic of China. It was found near the outer contact zone of the Laizhiling granite body and in the Middle-Upper Devonian carbonate rocks of Qiziqiao Formation. The mineral formed during the skarn stage. Its empirical formula is Sn1.81Li0.67(Fe1.43Zn1.19 Mn0.41)Σ3.03(Al14.89Mg1.46 Ti0.11Si0.01)Σ16.47O30(OH)2. The structure for magnesionigerite-6N6S was solved and refined in space group R-3?m, with a?=?5.7144(8), c?=?55.446(11) Å, V?=?1568.0(4) Å3, to R1?=?0.0528. Based on the structural refinement of single crystal diffraction data the formula of magnesionigerite-6N6S is Sn1.80Li0.97(Fe1.89Zn0.91) Σ2.80 (Al14.60Mg1.63 Ti0.20)Σ16.43O30(OH)2 with Z?=?3. Fe-rich Li-bearing magnesionigerite-6N6S contains 0.74 wt.% Li2O. The idealized charge-balanced composition of magnesionigerite-6N6S may be expressed by bivalent and trivalent cations: (Mg2+)4(Al3+)18O30(OH)2. The simplified general formula for the 6N6S polysomes in the nigerite and högbomite groups can be given as A x B18-x O30(OH)2, x?=?~4, where A?=?Mg2+, Fe2+, Zn2+; B?=?Al3+, Sn4+, Ti4+, Li+, □.  相似文献   

9.
The results of thermochemical studies are reported for nontronite samples from the Pinares-de-Majari (Eastern Cuba) (Sample I) and Kempirsai serpentine massif (South Urals, Kazakhstan) (Sample II). The enthalpies of formation of dehydrated hydroxyl-bearing nontronites from elements were determined by melt dissolution calorimetry using high-temperature heat-flux Tiana-Calvet microcalorimeter: Δ f H el o (298.15 K): ?4958 ± 13 kJ/mol for Mg0.4(Fe 1.5 3+ Mg0.4Ni0.1)[Si3.7Al0.3O10](OH)2 (I) and ?5003.6 ± 8.0 kJ/mol for Mg0.3Na0.1Ca0.1(Fe 1.4 3+ Mg0.5Ni0.1)[Si3.7Al0.3O10](OH)2 (II). It was determined experimentally that the enthalpy of dehydration (removal of molecular adsorption and interlayer water) of the studied nontronites is 6 ± 2 kJ per 1 mole H2O. The enthalpy of formation of nontronite of theoretical composition Mg0.15Fe 2 3+ [Si3.7Al0.3]O10(OH)2 was estimated at ?4750 kJ/mol. The Gibbs free energies of formation of the nontronites were calculated.  相似文献   

10.
The paper presents data on the thermochemical study (high-temperature melt calorimetry in a Tian–Calvet microcalorometer) of two natural Mg–Fe amphiboles: anthophyllite Mg2.0(Mg4.8Fe0.2 2+)[Si8.0O22](OH)2 from Kukh-i-Lal, southwestern Pamirs, Tajikistan, and gedrite Na0.4Mg2.0(Mg1.7Fe0.2 2+Al1.3)[Si6.3Al1.7O22](OH)2 from the Kola Peninsula, Russia. The enthalpy of formation from elements is obtained as–12021 ± 20 kJ/mol for anthophyllite and as–11545 ± 12 kJ/mol for gedrite. The standard entropy, enthalpy, and Gibbs energy of formation are evaluated for Mg–Fe amphiboles of theoretical composition.  相似文献   

11.
A new coexisting amphibole pair was recently found in the Jianshan iron deposit, Loufan of Shanxi Province, China. Electron microprobe analysis shows that the coexisting pair is composed of grünerite K0.001 (Na0.027 Ca0.073 Mn0.031 Fe 1.801 2+ )1.932 (Fe 2.948 2+ Mg1.964 Ti0.002 Al0.087)5Si8.069 O22.10(OH)2 and ferropargasite (K0.135 Na0.461)0.596 (Na0.088 Ca1.853 Mn0.005 Fe 0.072 2+ )2(Mn0.005Fe 2.789 2+ Mg0.875Ti0.021Fe 0.499 3+ Al0.812)5(Si6.103Al1.897)8O22.00(OH)2. The two kinds of amphiboles occur in amphibole schist not only as separate phenocrysts, but also are combined to form “single-crystal” phenocrysts in the form of topotactic intergrowths with the common c- and b-axes. The boundary between topotactic grünerite and ferropargasite is optically and chemically sharp. In comparison with the coexisting ferromagnesian amphibole and calcic amphibole pair discovered by predecessors, the newly discovered pair has lower Mg/Fe ratios and wider miscibility gaps.  相似文献   

12.
A detailed study of the chemical composition and substitutions in calcium tourmalines from a scapolite-bearing rare-metal pegmatite vein from the Sol’bel’der River basin has shown that their species attribution is determined by occupancy of octahedral site Y. The composition of the yellow tourmaline most abundant in the central part of the pegmatite bodyis rather constant and characterized by the ideal formula Ca(Mg2Li)Al6(Si6O18)(BO3)3(OH)3F. Variations in the chemical composition of zonal tourmaline crystals from the contact part of the pegmatite are controlled by abrupt change in the chemical medium during their formation. The yellow cores of these crystals are close in composition to tourmaline from the central part of the pegmatite vein. The Mg content abruptly decreases toward the crystal margin: Mg2+ → Fe2+, 2Mg2+ → Li+ + Al3+, and Mg2+ + OH → Al3+ + O2−. The composition of dark green marginal zones in tourmaline is characterized by the ideal formula Ca(Al1.5Li1.5)Al6(Si6O18)(BO3)3 (OH2O)(F). The results indicate specific formation conditions of pegmatite. The crystallochemical formulas of the studied tourmalines allow us to regard them as new mineral species in the tourmaline group.  相似文献   

13.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

14.
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1T and 2H 1, up to ~30% in the 2H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.  相似文献   

15.
High-pressure structural study of muscovite   总被引:1,自引:0,他引:1  
The compressibility and structural variations of two 2M1 muscovites having compositions (Na0.07K0.90 Ba0.010.02)(Al1.84Ti0.04Fe0.07Mg0.04)(Si3.02Al0.98) O10 (OH)2 (7 mole % paragonite) and (Na0.37K0.600.03)(Al1.84Ti0.02 Fe0.10Mg0.06)(Si3.03Al0.97) O10(OH)2 (37 mole % paragonite) were determined at pressures between 1 bar and 35 kbar, by single-crystal X-ray diffraction using a Merrill-Bassett diamond anvil cell. Isothermal bulk moduli, setting K′ = 4, were 490 and 540 (± 30) kbar for the Na-poor and Na-rich samples respectively. Both samples show highly anisotropic compressibility patterns, with β a ∶β b ∶β c = 1∶1.15∶3.95 for the Na-poor sample and β a ∶β b ∶β c = 1∶1.19∶3.46 for the Na-rich one. HP structural refinements showed that the different compressibility was largely due to the partial substitution of Na for K in the interlayer region. Moreover, the different compressibility of the tetrahedral and octahedral layers, observed in both micas, increased the a rotation of the tetrahedral layer by about 2° in 28 kbar, as also indicated by the evolution of interlayer cation bond lengths. This increases the repulsion of oxygens of the basal layers and between the high-charged cations of the tetrahedral layer. As a consequence, phengitic substitution, reducing α rotation, would increase the baric stability of mica. Comparison between the HP structures of muscovite and phlogopite indicated the lower compressibility of the latter, mainly due to the greater compressibility of the dioctahedral layer with respect to that of the trioctahedral layer. The HT and HP behaviour of di- and trioctahedral micas showed an anisotropy in the compressional pattern which was markedly greater than that observed in the dilatation pattern. This unexpected result was explained by the different evolution with P and T of alkaliO bond lengths. By combining HP and HT data, a tentative equation of state of muscovite is proposed.  相似文献   

16.
We investigated the valence state and spin state of iron in an Al-bearing ferromagnesian silicate perovskite sample with the composition (Mg0.88Fe0.09)(Si0.94Al0.10)O3 between 1 bar and 100 GPa and at 300 K, using diamond cells and synchrotron Mössbauer spectroscopy techniques. At pressures below 12 GPa, our Mössbauer spectra can be sufficiently fitted by a “two-doublet” model, which assumes one ferrous Fe2+-like site and one ferric Fe3+-like site with distinct hyperfine parameters. The simplest interpretation that is consistent with both the Mössbauer data and previous X-ray emission data on the same sample is that the Fe2+-like site is high-spin Fe2+, and the Fe3+-like site is high-spin Fe3+. At 12 GPa and higher pressures, a “three-doublet” model is necessary and sufficient to fit the Mössbauer spectra. This model assumes two Fe2+-like sites and one Fe3+-like site distinguished by their hyperfine parameters. Between 12 and 20 GPa, the fraction of the Fe3+-like site, Fe3+/∑Fe, changes abruptly from about 50 to 70%, possibly due to a spin crossover in six-coordinate Fe2+. At pressures above 20 GPa, the fractions of all three sites remain unchanged to the highest pressure, indicating a fixed valence state of iron within this pressure range. From 20 to 100 GPa, the isomer shift between the Fe3+-like and Fe2+-like sites increases slightly, while the values and widths of the quadruple splitting of all three sites remain essentially constant. In conjunction with the previous X-ray emission data, the Mössbauer data suggest that Fe2+ alone, or concurrently with Fe3+, undergoes pressure-induced spin crossover between 20 and 100 GPa.  相似文献   

17.
Synthetic melilites on the join Ca2MgSi2O7 (åkermanite: Ak)-Ca2Fe3+AlSiO7 (ferrialuminium gehlenite: FAGeh) were studied using X-ray powder diffraction and 57Fe Mössbauer spectroscopic methods to determine the distribution of Fe3+ between two different tetrahedral sites (T1 and T2), and the relationship between ionic substitution and incommensurate (IC) structure. Melilites were synthesized from starting materials with compositions of Ak100, Ak80FAGeh20, Ak70FAGeh30 and Ak50FAGeh50 by sintering at 1,170–1,350 °C and 1 atm. The average chemical compositions and end-member components, Ak, FAGeh and Geh (Ca2Al2SiO7), of the synthetic melilites were Ca2.015Mg1.023Si1.981O7 (Ak100), Ca2.017Mg0.788Fe 0.187 3+ Al0.221Si1.791O7 (Ak78FAGeh19Geh3), Ca1.995Mg0.695Fe 0.258 3+ Al0.318Si1.723O7 (Ak69FAGeh25Geh6) and Ca1.982Mg0.495Fe 0.449 3+ Al0.519Si1.535O7 (Ak49FAGeh44Geh7), respectively. Rietveld refinements using X-ray powder diffraction data measured using CuK α -radiation at room temperature converged successfully with goodness-of-fits of 1.15–1.26. The refined Fe occupancies at the T1 and T2 sites and the Mg and Si contents determined by electron microprobe analysis gave the site populations of [0.788Mg + 0.082Fe3+ + 0.130Al]T1[0.104Fe3+ + 0.104Al + 1.792Si]T2 for Ak78FAGeh19Geh3, [0.695Mg + 0.127Fe3+ + 0.178Al]T1[0.132Fe3+ + 0.144Al + 1.724Si]T2 for Ak69FAGeh25Geh6 and [0.495Mg + 0.202Fe3+ + 0.303Al]T1[0.248Fe3+ + 0.216Al + 1.536Si]T2 for Ak49FAGeh44Geh7 (apfu: atoms per formula unit), respectively. The results indicate that Fe3+ is distributed at both the T1 and the T2 sites. The mean T1–O distance decreases with the substitution of Fe3+ + Al3+ for Mg2+ at the T1 site, whereas the mean T2–O distance increases with substitution of Fe3+ + Al3+ for Si4+ at the T2 site, causing decrease in the a dimension and increase in the c dimension. However, in spite of the successful Rietveld refinements for the X-ray powder diffraction data measured using CuK α-radiation at room temperature, each Bragg reflection measured using CuK α1-radiation at room temperature showed weak shoulders, which were not observed in those measured at 200 °C. The Mössbauer spectra of the melilites measured at room temperature consist of two doublets assigned to Fe3+ at the T1 site and two or three doublets to Fe3+ at the T2 site, implying the existence of multiple T1 and T2 sites with different site distortions. These facts can be interpreted in terms of the IC structure in all synthetic melilites at room temperature, respectively. The results of Mössbauer analysis indicate that the IC structure in melilite is caused by not only known multiple T1 site, but also multiple T2 site at room temperature.  相似文献   

18.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

19.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

20.
The solubility of Tio2 in phlogopites has been experimentally determined in the system K2Mg6Al2Si6O20(OH)4-K2Mg4TiAl2Si6O20(OH)4-K2Mg5TiAl4Si4O20(OH)4 between 825–1300°C and 10–30 kbar under vapour absent conditions. Starting compositions lie along the join K2Mg6Al2Si6O20(OH)4-K2Mg4.5TiAl3Si5O20(OH)4 which represents a combination of the Mg[VI]2Si[IV] = Ti[VI]2Al[VI] and 2Mg[VI] = Ti[VI][VI] substitution mechanisms for Ti in phlogopites. The results of the experiments indicate a systematic increase in solubility of Ti with increasing temperature and decreasing pressure for given bulk Tio2 content. Under isobaric conditions high temperature Ti-saturated phlogopite breaks down to Ti-deficient phlogopite + rutile + vapour. Mass balance calculations suggest that the vapour phase may contain K2O dissolved in H2O and that the reaction is controlled by the vapour phase. Analyses of phlogopites coexisting with rutile and vapour can be represented in terms of the end-member components phlogopite [K2Mg6Al2Si6O20(OH)4], eastonite [K2Mg5Al4Si5O20(OH)4], an octahedral site deficient Ti-phlogopite (Ti-OSD) of composition K2(Mg4Ti□)Al2Si6)O20(OH)4, and Ti-eastonite [K2Mg5TiAl4Si4O20(OH)4]. With decreasing amounts of Ti in these phlogopites there is a decrease in the Ti-eastonite component and increase in the eastonite component.The general equation for the breakdown of Ti-phlogopite solid solution to Ti-free phlogopite + rutile + vapour is: 14 Ti-eastonite + 7 Ti-OSD ? 16 eastonite + 3 phlogopite + 21 rutile + 4 H2O + 2 K2O. Lack of knowledge of H2O and K2O activities in the vapour phase does not permit evaluation of thermodynamic constants for this reaction. The Ti solubility in phlogopites and hence its potential as a geothermobarometer under lower crustal to upper mantle conditions is likely controlled by common mantle minerals such as forsterite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号