首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
At the beginning of the 21st century, a series of great earthquakes were recorded in northeastern Tibet, along the periphery of the Bayan Hara lithospheric block. An earthquake with MS = 8.1 occurred within the East Kunlun fault zone in the Kunlun Mountains, which caused an extended surface rupture with left-lateral strike slip. An earthquake with MS = 8 occurred in Wenchuan (China) on May 12, 2008, giving rise to an extended overthrust along the Lunmanshan fault zone. An earthquake with MS = 7.1 occurred in Yushu (China) on April 14, 2010; its epicenter was on the Grazze–Yushu–Funchuoshan fault; a left-lateral strikeslip offset was observed on the surface. An earthquake with MS = 7 occurred in the vicinity of Lushan on April 20, 2013; its epicenter was within the Lunmanshan fault zone, 103 km southwest of the zone of the catastrophic Wenchuan earthquake. An earthquake with MS = 8.2 occurred in Nepal on April 25, 2015. Based on the CSN seismic catalog, the energy of all earthquakes in eastern Tibet at the end of the 20th and beginning of the 21st centuries was estimated. It was found that Tibet was seismically quiet from 1980 to 2000. The beginning of the 21st century has been marked by seismic activation with earthquake sources migrating southward to surround the Bayan Hara lithospheric block from every quarter. Therefore, this block can be regarded as one of the most seismically active regions of China.  相似文献   

2.
Results of investigation of the lithosphere in the Kamchatka seismic focal zone from dynamic characteristics of earthquake records obtained at regional stations are presented. It is assumed that the specificity of the source zone can be estimated by the relation Cr = K P ? bK S ? c characterizing relative energies (energy classes, according to [Fedotov, 1972]) of short period transverse and longitudinal waves in the source. Azimuthal, spatial, and temporal variations in Cr and their relation to focal mechanisms are examined. Spatiotemporal variations in this parameter are shown to be caused by the influence of variations in the conditions in the source zone (its substance or process) on the radiation of P and S waves.  相似文献   

3.
A better understanding of rockburst precursors and high stress distribution characteristics can allow for higher extraction efficiency with reduced safety concerns. Taking the rockburst that occurred on 30 January 2015 in the Sanhejian Coal Mine, Jiangsu Province, China, as an example, the mechanism of rockburst development in a roadway was analysed, and a combined method involving b values and seismic velocity tomography was used to assess the rockburst in both time and space, respectively. The results indicate that before the rockburst, b values dropped significantly from 0.829 to 0.373. Moreover, a good agreement between a significant decrease in b values and the increase of the number of strong tremors was found. Using seismic tomography, two rockburst risk areas were determined where the maximum velocity, maximum velocity anomaly and maximum velocity gradient anomaly were 6 km/s, 0.14 and 0.13, respectively. The high-velocity regions corresponded well with the rockburst zone and large seismic event distributions. The combination of b values and seismic tomography is proven to have been a promising tool for use in evaluating rockburst risk during underground coal mining.  相似文献   

4.
On 24 September 2014, a ML 2.3 earthquake occurred southwest of the urban area of Karlsruhe, Germany, which was felt by a few people (maximum intensity I 0?=?III). It was the first seismic event in this highly populated area since an I 0?=?VII earthquake in 1948. Data of 35 permanent and temporary seismometers were analysed to localise the event and to determine the focal mechanism to compare it to previous seismicity. Restricting the data to P- and S-phases from 18 nearby stations and optimising the local earth model result in an epicentre in the southwest of the city at 48.986°N/8.302°E and in a hypocentral depth of 10 km. To calculate the focal mechanism, 22 P- and 5 SH-polarities were determined that constrain a stable left lateral strike-slip focal mechanism with a minor thrusting component and nodal planes striking NE-SW and NW-SE. The epicentre lies in the vicinity of the I 0?=?VII earthquake of 1948. Both events are part of the graben-parallel flower structure beneath the Upper Rhine Graben, parallel to the active Rastatt source zone, which runs 5 km further east and included the epicentre of the 1933 Rastatt I 0?=?VII earthquake. The focal mechanisms of the 2014 and 1948 earthquakes show NE-SW striking nodal planes that dip to the southeast. However, for the 1948 event, a normal faulting mechanism was determined earlier. Taking the uncertainty of the epicentre and focal mechanism in 1948 and its fault dimensions into account, both events might have happened on the same fault plane.  相似文献   

5.
The seismicity that accompanied the Tolbachik Fissure Eruption was recorded by additional seismic stations that were installed in the southern Klyuchevskoi Volcanic Cluster area in January to October 2013. We used broadband (0.033–50 Hz) three-component digital Guralp CMG-6TD seismometers. This temporary network provided seismicity data at a lower energy level than can be done using the regional seismograph network of Kamchatka. The processing of the resulting digital records supplied data for compiling a catalog of over 700 M L = 0–3.5 (K S = 1.5–8.5) earthquakes, which is an order of magnitude greater than the number of events located by the regional network for the same period of time. The seismicity in the area of Ploskii Tolbachik Volcano was found to concentrate mostly in spatially isolated areas during the eruption. The main isolated clusters of earthquakes were identified both in the eruption area itself and along the periphery of Ploskii Tolbachik Volcano, in the area of the Zimina volcanic massif, and in the Tolud epicenter zone; the eruption zone was not dominant in the seismicity. The region of a shallow seismicity increase beneath Ploskii Tolbachik before the eruption was not found to exhibit any increased activity during the time the temporary seismograph network was operated, which means that a seismicity inversion took place at the beginning of the eruption. We discuss the question of what the earthquake-generating features are that we have identified.  相似文献   

6.
The complex seismotectonic studies of the pleistoseist area of the Ilin-Tas earthquake (Ms = 6.9), one of the strongest seismic events ever recorded by the regional seismic network in northeastern Russia, are carried out. The structural tectonic position, morphotectonic features of present-day topography, active faults, and types of Cenozoic deformations of the epicentral zone are analyzed. The data of the instrumental observations are summarized, and the manifestations of the strong seismic events in the Yana–Indigirka segment of the Cherskii seismotectonic zone are considered. The explanation is suggested for the dynamical tectonic setting responsible for the Andrei-Tas seismic maximum. This setting is created by the influence of the Kolyma–Omolon indenter, which intrudes into the Cherskii seismotectonic zone from the region of the North American lithospheric plate and forms the main seismogenic structures of the Yana–Indigirka segment in the frontal zone (the Ilin-Tas anticlinorium). The highest seismic potential is noted in the Andrei- Tas block—the focus of the main tectonic impacts from the Kolyma–Omolon superterrane. The general trend of this block coincides with the orientation of the major axis of isoseismal ellipses (azimuth 50°–85°), which were determined from the observations of macroseismic effects on the ground after the Uyandina (Ms = 5.6), Andrei-Tas (Ms = 6.1), and Ilin-Tas (Ms = 6.9) earthquakes.  相似文献   

7.
In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w?≥?4.4 reported during 1980–2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N?=?50 events and T?=?2?years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z?=?6.7), (ii) the western offshore side of Sumatra Island (Z?=?7.1), and (iii) western Myanmar (Z?=?6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.  相似文献   

8.
The tectonics of North Iceland is dominated by interaction of the Iceland hot spot and the mid-oceanic Kolbeinsey Ridge. Transform movement along the transition zone, often called Tjörnes Fracture Zone, and the seismicity it generates has been documented in the past. This study uses the seismicity data of the permanent South Iceland Lowland (SIL) network to quantify velocity structure from travel time inversion. The SIL seismic dataset is capable of illuminating parts of the region in a 3D seismic velocity inversion, primarily between 7 and 12 km depth, with less resolution elsewhere because of the sparse setup of the monitoring network. The problem has been analysed in 1, 2 and 3 dimensions and evaluated with 4 different inversion tools. The study reports a correlation of a seismic velocity anomaly in compressional wave velocity v p and shear wave velocity v s with the Husavik-Flatey fault and a further subsurface lineament stretching between the islands of Flatey and Grimsey. Finally, our results support a decrease of crustal thickness between the mainland and the island of Grimsey.  相似文献   

9.
Iran is one of the most seismically active areas of the world and frequently suffers from destructive earthquakes. Rare studies on anthropogenic-induced seismicity in Iran may be related to less attention to triggered events and more concern to natural origin of earthquakes. Hence, the present study as a frontier research aims to investigate the mining-induced earthquakes in Iran. For this purpose, distribution of ~?76,000 seismic events was investigated between the years 2006 and 2013. This study considered a correlation test to investigate the possible mining triggering of the seismic events based on a network of 194 geographical pixels (1°?×?1°) in ArcGIS. Results conveniently confirmed a positive meaningful relation between all earthquake events with magnitudes M?>?0.5 and mining activities in Iran (R?=?0.42). Detailed results confirmed that the most of earthquake swarms (at least ~?60%) had mining-induced origin, which were spatially located in same pixels of metallic mineral mining sites. The correlation test between earthquake swarms and mining activities indicated positive and meaningful relationships in four regions of Alborz, Kopet Dag, Kerman, and Zagros, respectively (R?=?0.61, 0.54, 0.51, and 0.50). Hence, aforementioned seismic regions exposed sensitive seismic responses toward mining triggering effects in Iran.  相似文献   

10.
The parameters of the earthquake that took place February 3, 2015, near the city of Sumy, Ukraine, were calculated from an analysis of records obtained by both Russian and Ukrainian seismic stations (Poltava, Skvira, Nikolaev, Dneropetrovsk, and Desna). The calculated hypocenter depth of 54 km was verified by several approaches: isolation of deep PP, SP phases from the records of remote stations and solution of the kinematic problem for the Poltava station. The focal mechanism as shear with a complex fault component was determined by the first arrivals of P-waves. The data on the azimuthal travel-time curve confirm the focal mechanism. We have calculated the earthquake parameters; they are as follows: length gap L1 = 8.08 km, L2 = 6.68 km, a destruction rate of C = 2 km/s. We have obtained the dynamic parameters of the event. The calculated fault length (L = 5.46 km) within the accuracy limits of the method coincides with the early result obtained by the azimuthal travel-time curve. On the basis of these results, we suggest that elastic energy release and formation of the dislocations in the earthquake source occurred on a smooth, prefractured fault (σr > 0). Association of the hypocenter with the tectonic node of the northern marginal fault of the Dnieper–Donets graben and northern branch of Kryvyi Rih–Kremenchuk suture confirm this. Here, we observe a considerable Moho depth, structural alteration, and high gradients of the temperature and magnetic and electric rock properties in the lower Earth’s crust and upper mantle. These circumstances are favorable for the earthquake occurring here.  相似文献   

11.
This paper reports a study of the Tolud earthquake sequence; the sequence was a burst of shallow seismicity between November 28 and December 7, 2012; it accompanied the initial phase in the Tolbachik Fissure Eruption of 2012?2013. The largest earthquake (the Tolud earthquake of November 30, 2012, to be referred to as the Tolud Earthquake in what follows, with KS = 11.3, ML = 4.9, MC = 5.4, and MW = 4.8) is one of the five larger seismic events that have been recorded at depths shallower than 10 km beneath the entire Klyuchevskoi Volcanic Cluster in 1961?2015. It was found that the Tolud earthquake sequence was the foreshock–aftershock process of the Tolud Earthquake. This is one of the larger seismicity episodes ever to have occurred in the volcanic areas of Kamchatka. Data of the Kamchatka seismic stations were used to compute some parameters for the Tolud Earthquake and its largest (ML = 4.3) aftershock; the parameters include the source parameters and mechanisms, and the moment magnitudes, since no information on these is available at the world seismological data centers. The focal mechanisms for the Tolud Earthquake and for its aftershock are consistent with seismic ruptures at a tension fault in the rift zone. Instrumental data were used to estimate the intensity of shaking due to the Tolud Earthquake. We discuss the sequence of events that was a signature of the time-dependent seismic and volcanic activity that took place in the Tolbachik zone in late November 2012 and terminated in the Tolud burst of seismicity. Based on the current ideas of the tectonics and magma sources for the Tolbachik volcanic zone, we discuss possible causes of these earthquakes.  相似文献   

12.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

13.
The geographical area where a seismic event of magnitude M?≥?M t is detected by a seismic station network, for a defined probability is derived from a station probability of detection estimated as a function of epicentral distance. The latter is determined from both the bulletin data and the waveforms recorded by the station during the occurrence of the event with and without band-pass filtering. For simulating the real detection process, the waveforms are processed using the conventional Carl Johnson detection and association algorithm. The attempt is presented to account for the association time criterion in addition to the conventional approach adopted by the known PMC method.  相似文献   

14.
The relationship between the characteristics of seismic waves in the Western Caucasus and the geological-tectonic structure of the region is studied for identifying the specificity of seismic propagation in the mountainous regions with a complicated geological structure and forecasting the characteristics of the propagation from the geological and tectonic data. The interpretation is presented for the estimates of the Q-factor of the medium (Q(f) ~ 55f0.9 in the region of Sochi and Q(f) ~ 90f0.7 in the region of Anapa), seismic wave enhancement in the upper crustal layers (A(f) ~ 1), and peak ground acceleration residuals, which were previously determined from the records of the local earthquakes and show the distributions of local variations in the parameters of seismic wave radiation and propagation. The obtained characteristics are interpreted in the context of the up-to-date information about the tectonic, geological, and deep structure of the epicentral zones in the Western Caucasus and neighboring territory of the Black Sea. The discrepancies revealed in the low-frequency behavior of the Q-factor in the vicinities of Sochi and Anapa is accounted for by the spatial scale and character of tectonic dislocations of the rocks in these regions. The local variations in the parameters of seismic radiation and propagation are probably related to the geological features of the region such as the fault structures, including the thrusts, shatter zones, oblique seismic boundaries, variations in the thickness and consolidation of the sedimentary cover, as well as the peculiarities in the structure and material composition of the basement.  相似文献   

15.
Nonlinear response history analyses and use of strong ground motion data including near-field effects has become a common practice in both performance based design of tall buildings and design of base-isolated buildings. On the other hand, ordinary buildings are commonly analysed via response spectrum analysis following the rules of conventional seismic codes, most of which do not take near-field effects into account. This study evaluates the necessity and the adequacy of near-source factors for ordinary fixed-base buildings that are not specifically classified as tall, by comparing dynamic responses of 3, 8, and 15-story benchmark buildings obtained via(1) linear time history analyses using 220 record components from 13 historical earthquakes and 45 synthetic earthquake records of different magnitudes and fault distances and(2) response spectrum analyses in accordance with the Turkish Earthquake Code 2007-representing seismic codes not taking near-field effects into account- and the Uniform Building Code 1997 which takes near-field effects into account via near-source factors that amplify design response spectrum. It is shown that near-source factors are crucial for the safe design of not-so-tall ordinary fixed-base buildings but those defined in UBC97 may still not be adequate for those located in the vicinity of the fault.  相似文献   

16.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.  相似文献   

17.
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW(East-West) direction, NS(South- North) direction and perpendicular to the surface(z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations:(1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined;(2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and(3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion.  相似文献   

18.
The refinement of the accuracy and resolution of the monthly global gravity field models from the GRACE satellite mission, together with the accumulation of more than a decade-long series of these models, enabled us to reveal the processes that occur in the regions of large (Mw≥8) earthquakes that have not been studied previously. The previous research into the time variations of the gravity field in the regions of the giant earthquakes, such as the seismic catastrophes in Sumatra (2004) and Chile (2010), and the Tohoku mega earthquake in Japan (2011), covered the coseismic gravity jump followed by the long postseismic changes reaching almost the same amplitude. The coseismic gravity jumps resulting from the lower-magnitude events are almost unnoticeable. However, we have established a long steady growth of gravity anomalies after a number of such earthquakes. For instance, in the regions of the subduction earthquakes, the growth of the positive gravity anomaly above the oceanic trench was revealed after two events with magnitudes Mw=8.5 in the Sumatra region (the Nias earthquake of March 2005 and the Bengkulu event of September 2007 near the southern termination of Sumatra Island), after the earthquake with Mw=8.5 on Hokkaido in September 2007, a doublet Simushir earthquake with the magnitudes Mw = 8.3 and 8.1 in the Kuriles in November 2006 and January 2007, and after the earthquake off the Samoa Island in September 2009 (Mw=8.1). The steady changes in the gravity field have also been recorded after the earthquake in the Sichuan region (May 2008, Mw = 8.0) and after the doublet event with magnitudes 8.6 and 8.2, which occurred in the Wharton Basin of the Indian Ocean on April 11, 2012. The detailed analysis of the growth of the positive anomaly in gravity after the Simushir earthquake of November 2006 is presented. The growth started a few months after the event synchronously with the seismic activation on the downdip extension of the coseismically ruptured fault plane zone. The data demonstrating the increasing depth of the aftershocks since March 2007 and the approximately simultaneous change in the direction and average velocity of the horizontal surface displacements at the sites of the regional GPS network indicate that this earthquake induced postseismic displacements in a huge area extending to depths below 100 km. The total displacement since the beginning of the growth of the gravity anomaly up to July 2012 is estimated at 3.0 m in the upper part of the plate’s contact and 1.5 m in the lower part up to a depth of 100 km. With allowance for the size of the region captured by the deformations, the released total energy is equivalent to the earthquake with the magnitude Mw = 8.5. In our opinion, the growth of the gravity anomaly in these regions indicates a large-scale aseismic creep over the areas much more extensive than the source zone of the earthquake. These processes have not been previously revealed by the ground-based techniques. Hence, the time series of the GRACE gravity models are an important source of the new data about the locations and evolution of the locked segments of the subduction zones and their seismic potential.  相似文献   

19.
The lithosphere-asthenosphere boundary (LAB) is investigated recently very effectively, mostly using seismic methods because of their deep penetration and relatively good resolution. The nature of LAB is still debated, particularly under “cold” Precambrian shields and platforms. Passive experiment “13 BB star” is dedicated to study deep structure of the Earth’s interior in the marginal zone of the East European craton in northern Poland. The seismic network consists of 13 broadband stations on the area of ca. 120 km in diameter. The network is located in the area of well-known sedimentary cover and crustal structure. Good records obtained till now, and expected during next 1-year long recording campaign, should yield images of detailed structure of the LAB, ?410”, “?520”, and ?660” km discontinuities, as well as mantle-core boundary and inner core.  相似文献   

20.
The paper considers the Argun earthquake of July 22, 2011 (M w = 4.5), which occurred in the Argun River valley in a low-seismicity territory in China. The focal parameters of the earthquake (depth of the hypocenter, moment magnitude, scalar seismic moment, and focal mechanism) were determined by calculating the seismic moment tensor from the amplitude spectra of surface waves and the data on the signs of the first arrivals of body waves at regional stations. The solution of the focal mechanism makes it possible to assume a relationship between the earthquake focus and a fault with a northeastern strike bordering the southeastern side of the Argun Basin (in Chinese territory). The Argun earthquake was felt in Russia with an intensity of II–III to V at the epicentral distances up to 255 km. The intensity of shaking did not exceed values suggested by new GSZ-2012 and GSZ-2014 seismic zoning maps of Russian territory. Nevertheless, the question on the possible occurrence of stronger earthquakes in the studied region remains open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号