首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
海潮误差是GRACE时变重力场反演中重要的误差源,目前发布的海潮模型中主要包含振幅较大的主潮波分量模型,在时变重力场反演中次潮波的影响也是不可忽略的,因此,GRACE时变重力场反演中的海潮误差主要包括受限于海潮模型误差和次潮波影响.本文利用轨道模拟方法检测了短周期潮波的混频周期以及次潮波对ΔC20,ΔC30的时序特征,并进一步通过轨道模拟结果分析了海潮误差对时变重力场反演的影响,然后通过实测数据解算分析了海潮误差对当前GRACE时变重力场解算的影响,研究发现:(1)利用轨道模拟能够有效地检测短周期潮波的混频周期;(2)时变重力场解算过程中,次潮波的影响大于海潮模型误差的影响;(3)海潮模型误差以及次潮波影响是当前GRACE没有达到基准精度的重要因素之一.  相似文献   

2.
Currently,aliasing error of temporal signal model becomes the main factor constraining the accuracy of temporal gravity field.In provision of three types of satellite formations,i.e.,GRACE-type,Pendulum-type and n-s-Cartwheel-type,which are suitable for gravity mission and composed of observation in different directions,here we design two cases and conduct a simulation experiment on the feasibility to apply satellite formations for eliminating the influence from the aliasing error of ocean tide models.The result of our experiment shows that,when the aliasing error is disregarded,n-s-Cartwheel formation can provide the best conditions for gravity field determination,which,compared with GRACE-type,can improve the accuracy by 43%.When aliasing error of the ocean tide model acts as the main source of error,the satellite formation applied in dynamic method for gravity field inversion cannot eliminate aliasing or improve the accuracy of gravity field.And due to its higher sensitivity to the high-degree variation of gravity field,the Cartwheel-type formation,which includes the radial observation,can result in the gravity field containing more high-frequency signals for the ocean tide model error,and lead to a dramatically larger error.  相似文献   

3.
Monthly solutions of the current GRACE mission are affected by the aliasing problem. In fact, sub-monthly temporal sampling may reduce the temporal aliasing errors but this will be done at the cost of reduced spatial sampling. Reducing the effects of temporal aliasing can be achieved by setting two pairs of satellites in different orbital planes. In this paper, we investigate the so-called Multi-GRACE constellation to improve temporal and spatial resolution for the GRACE-type mission without deteriorating accuracy. We investigate two scenarios: the Multi-GRACE ΔM that improves the temporal sampling only and the Multi-GRACE ΔΩ that improves the spatial sampling besides the temporal one in time span of only 12 days for the hydrological signal as a time-varying gravity field component. Our findings indicate that the hydrological signal can be submonthly recovered and the aliasing errors can be reduced as well by increasing temporal resolution (sub-month) via the Multi-GRACE ΔΩ constellations.  相似文献   

4.
G. Chen  R. Ezraty 《Annales Geophysicae》1997,15(11):1478-1488
It is becoming well known that aliasing associated with ocean tides could be a major source of systematic error in altimeter sea-level measurements, due to asynoptic sampling and imperfect tide modelling. However, it has been shown that signals of non-tidal origin may also contribute significantly to the observed aliasing. In this paper, numerical simulations are performed to demonstrate the full aliasing potential associated with altimeter observations of seasonal sea-level variability and annual Rossby waves. Our results indicate that ignorance of non-tidal aliasing may lead to the possibility of underestimating the total aliasing and misinterpreting or overlooking existing geophysical phenomena. Therefore, it is argued that an entire aliasing picture should be kept in mind when satellite altimeter data are analysed.  相似文献   

5.
In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.  相似文献   

6.
The satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer), the first Core Mission of the Earth Explorer Programme funded by ESA (European Space Agency), is dedicated to the precise modelling of the Earth's gravity field, with its launch planned for 2006. The mathematical models for parameterizing the Earth's gravity field are based on a series expansion into spherical harmonics, yielding a huge number of unknown coefficients. Their computation leads to the solution of very large normal equation systems. An efficient way to handle these equation systems is the so-called semianalytic or lumped coefficients approach, which theoretically requires an uninterrupted, continuous time series of observations, recorded along an exact circular repeat orbit. In this paper the consequences of violating these conditions are analyzed. The effects of an interrupted observation stream onto the estimated spherical harmonic coefficients are demonstrated, and an iterative strategy, which reduces the negative influence depending on the characteristics of the data gaps, is proposed. Additionally, the impact of an imperfectly closing orbit (non-repeat orbit) on the gravity field model is analyzed, and a strategy to minimize the corresponding errors is presented. The applicability of the semianalytic approach also to a joint inversion of satellite-to-satellite tracking data in high-low mode (hl-SST) and satellite gravity gradiometry (SGG) observations is demonstrated, where the analysis of the former component is based on the energy conservation law. Several realistic case studies prove that the semianalytic approach is a feasible tool to generate quick-look gravity solutions, i.e. fast coefficient estimates using only partial data sets. This quick-look analysis shall be able to detect potential distortions of statistical significance (e.g. systematic errors) in the input data, and to give a fast feedback to the GOCE mission control.  相似文献   

7.
The ESA Gravity and steady state Ocean and Circulation Explorer, GOCE, mission will utilise the principle of satellite gravity gradiometry to measure the long to medium wavelengths in the static gravity field. Previous studies have demonstrated the low sensitivity of GOCE to ocean tides and to temporal gravity field variations at the seasonal scale. In this study we investigate the sensitivity of satellite gradiometry missions such as GOCE to secular signals due to ice-mass change observed in Greenland and Antarctica. We show that unaccounted ice-mass change signal is likely to increase GOCE-related noise but that the expected present-day polar ice-mass change is below the GOCE sensitivity for an 18-month mission. Furthermore, 2–3 orders of magnitude improvement in the gradiometry in future gradiometer missions is necessary to detect ice-mass change with sufficient accuracy at the spatial resolution of interest.  相似文献   

8.
Interpretations of space-based measurements of atmospheric parameters in the mesosphere and thermosphere are complicated by large local-time variations at these altitudes. For this reason, satellite orbits are often preferred which precess through all local times one or more times per season. However, the local-time structure of the atmosphere is inherently non-stationary, which can lead to sampling and aliasing difficulties when attempting to deconvolve the measurements into zonal mean and tidal components. In the present study, hourly radar measurements of mesopause-region winds are used to form a mock data base which can be used to gain insight into implications of the aforementioned problems; the use of actual measurements introduces a realistic element of geophysical temporal variability. Assuming zonal symmetry (i.e., migrating tides superimposed on a zonal mean circulation), the radar measurements are sampled from the satellite perspective for orbital inclinations of 57° and 70°, and compared to the ground or true perspective. These comparisons provide realistic estimates of the errors to be expected when attempting to derive mean and tidal components from space-based measurements. For both diurnal and semidiurnal components, and the quoted satellite inclinations, acceptable errors (3–4 m/s rms) are obtained for data covering 24 h local time (i.e., ascending plus descending nodes); the corresponding errors for singlenode data (12 h local-time coverage) are of order 8–11 m/s, and therefore may not represent reliable estimates of the actual tidal components. There exist certain caveats in connection with the latter conclusion which are discussed.  相似文献   

9.
赵倩  苏小宁 《地震》2016,36(3):152-160
从满足重力卫星编队的轨道根数条件出发, 通过全过程动力法仿真实验, 计算得出了满足串联编队(GRACE-type)、 钟摆编队(Pendulum-type)和车轮编队(Cartwheel-type)这三种卫星编队模式稳定在轨的轨道参数, 并验证了其稳定性。 同时, 深入分析了各种卫星编队模式对于重力卫星任务的适用性, 结果表明, 同时包含两个方向观测量的Pendulum-type编队和Cartwheel-type编队, 能够在一定程度上克服GRACE-type编队中存在的由单一星间观测量的强相关性导致的重力场各向异性敏感度问题, 是理论上更适合重力探测任务的卫星编队模式。  相似文献   

10.
Traditionally, ocean tides have been modeled in frequency domain with a forcing from selected tidal constituents. It is a natural approach; however, it implicitly neglects non-linearities of ocean dynamics. An alternative approach is time-domain modeling with a forcing given by the full lunisolar potential, i.e., all tidal waves are a priori included. This approach has been applied in several ocean tide models; however, some challenging tasks still remain, for example, assimilation of satellite altimetry data. In this paper, we introduce the assimilative scheme applicable in a time-domain model, which is an alternative to existing techniques used in assimilative ocean tide models. We present results from DEBOT, a global barotropic ocean tide model, which has two modes: DEBOT-h, a purely hydrodynamical mode, and DEBOT-a, an assimilative mode. The accuracy of DEBOT in both modes is assessed through a series of tests against tide gauge data which demonstrate that DEBOT is comparable to state-of-the-art global ocean tide models for major tidal constituents. Furthermore, as signals of all tidal frequencies are included in DEBOT, we also discuss modeling of minor tidal constituents and non-linear compound tides. Our modeling approach can be useful for those applications where the frequency domain approach is not suitable.  相似文献   

11.
The main oceanographic objective of the future SWOT mission is to better characterize the ocean mesoscale and sub-mesoscale circulation, by observing a finer range of ocean topography dynamics down to 20 km wavelength. Despite the very high spatial resolution of the future satellite, it will not capture the time evolution of the shorter mesoscale signals, such as the formation and evolution of small eddies. SWOT will have an exact repeat cycle of 21 days, with near repeats around 5–10 days, depending on the latitude. Here, we investigate a technique to reconstruct the missing 2D SSH signal in the time between two satellite revisits. We use the dynamical interpolation (DI) technique developed by Ubelmann et al. (2015). Based on potential vorticity (hereafter PV) conservation using a one and a half layer quasi-geostrophic model, it features an active advection of the SSH field. This model has been tested in energetic open ocean regions such as the Gulf Stream and the Californian Current, and has given promising results. Here, we test this model in the Western Mediterranean Sea, a lower energy region with complex small scale physics, and compare the SSH reconstruction with the high-resolution Symphonie model. We investigate an extension of the simple dynamical model including a separated mean circulation. We find that the DI gives a 16–18% improvement in the reconstruction of the surface height and eddy kinetic energy fields, compared with a simple linear interpolation, and a 37% improvement in the Northern Current subregion. Reconstruction errors are higher during winter and autumn but statistically, the improvement from the DI is also better for these seasons.  相似文献   

12.
The statistical concept of the power spectrum has proven to be of great value in the analysis of time series and linear systems for which the inputs and outputs are functions of time. This paper shows how the concept can be extended to two-dimensional spatial power spectra and illustrates, by example, how the concept can be applied to the determination of optimal data processing methods for satellite-derived magnetic anomaly data and to the planning of missions to obtain such data.The analysis techniques indicated are applied to a data set and data processing procedure described by Mayhew et al. (1980). These authors describe magnetic anomaly data for Australia and surrounding ocean obtained by the polar orbit POGO series satellites. This paper shows that the data processing method used by these authors is approximately equivalent to an invariant two-dimensional linear filter and that it is reasonably close to optimal with respect to accuracy, though some possible improvements are suggested. Nevertheless, as is usual when filtering data, some real “signal” is unavoidably removed along with the “noise”, resulting in errors that can be quite large.A method for reducing these errors by using additional data from a medium inclination orbit satellite (for example, 60° inclination) is suggested.  相似文献   

13.
The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.  相似文献   

14.
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates of the instrument drift are employed (and after correcting for a recently discovered software error), and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A preliminary estimate of the error in the latter estimate is 1.3 mm/year, however this issue requires more research. Characterization of the observed sea level variations using Empirical Orthogonal Functions (EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is unknown due to a constant volume constraint used in the model. EOF analysis of measured sea surface temperature (SST) variations also show a mode with similar temporal and spatial structure. However, the concentration of the observed sea level rise in this mode does not preclude the possibility that multiple phenomena have contributed to this mode, thus a link between the observed sea level rise and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea level rise will depend on refinements currently being made in the instrument calibration techniques. In addition, the possibility of interannual and decadal variations of global mean sea level requires that a much longer time series of satellite altimetry be collected before variations caused by climate change can be unambiguously detected.  相似文献   

15.
In this work, the GOCE satellite orbit is described in the aspect of perturbations in the Keplerian osculating elements. The perturbations come from the Earth and ocean tides, the gravitation of the Moon, the gravitation of the Sun, the gravitation of planets and Pluto, and the relativity effects. These perturbations are computed for the 30-day interval with a sampling of 2 min. To obtain the simulated orbit, the Cowell numerical integration method of 8th order is used. The first part of the work contains the root mean square (RMS) values of aforementioned perturbations due to the specified forces. The perturbations were compared taking into account their RMS characteristics.  相似文献   

16.
The orbits of two geodetic satellites, Starlette and Stella, have been analysed in order to determine ocean-tide parameters. The orbit of Starlette has been determined over a three-year period and Stella over a one-year period. Long-period analysis techniques have been used to determine the evolutions of the orbital inclination, eccentricity and right ascension of the ascending node for each satellite due to ocean tides. The ocean-tide parameters have been determined in a simultaneous fitting of the theoretical orbital variations to the observed variations. The results are compared with ocean-tide models.  相似文献   

17.
A knowledge of the vertical component of the oceanic tidal load to a precision of at least one microgal is essential for the geophysical exploitation of the high-precision absolute and differential gravity measurements which are being made at ground level and in deep boreholes. On the other hand the ocean load and attraction signal contained in Earth tide gravity measurements can be extracted with a precision which is sufficient to characterize the behaviour of the oceanic tides in different basins and this provides a check of the validity of the presently proposed cotidal maps. The tidal gravity profiles made since 1971 from Europe to Polynesia, through East Africa, Asia and Australia, with correctly intercalibrated gravimeters, comprise information from 91 tidal gravity stations which is used in this paper with this goal in mind.A discussion of all possible sources of error is presented which shows that at the level of 0.5 μgal the observed effects cannot be ascribed to computational or instrumental errors. Cotidal maps which generate computed loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard to apply tidal corrections to high-precision measurements made by using new techniques in geodesy, geophysics and geodynamics, satellite altimetry, very long baseline interferometry, Moon and satellite laser ranging and absolute gravity. The recent cotidal maps calculated by Schwiderski for satellite altimetry reductions agree very well with land-based gravimeter observations of the diurnal components of the tides (O1, K1 and P1 waves) but his semi-diurnal component maps (M2, S2 and N2 waves) strangely appear less satisfactory in some large areas. The maps of Hendershott and Parke give good results in several large areas but not everywhere. More detailed investigations are needed not only for several coastal stations but mainly in the Himalayas.  相似文献   

18.
Satellite Laser Ranging (SLR) to LAGEOS has a remarkable contribution to high-precise geodesy and geodynamics through deriving and validating various global geophysical models. This paper validates ocean tide models based on the analysis of satellite altimetry data, coastal tide gauges, and hydrodynamic data, i.e., CSR3.0, TOPEX4.0, CSR4.0A, FES2004, GOT00.2, and the CSRC Schwiderski model. LAGEOS orbits and SLR observation residuals from solutions based on different ocean tide models are compared and examined. It is found that LAGEOS orbits are sensitive to tidal waves larger than 5 mm. The analysis of the aliasing periods of LAGEOS orbits and tidal waves reveals that, in particular, the tidal constituent S2 is not well established in the recent ocean tide models. Some of the models introduce spurious peaks to empirical orbit parameters, which can be associated with S2, Sa, and K2 tidal constituents, and, as a consequence, can be propagated to fundamental parameters derived from LAGEOS observations.  相似文献   

19.
低轨重力卫星轨道的精确确定是获得精密地球重力场模型的前提, 而精密重力场模型又是获得高精度定轨结果的保证.本文简述了利用卫星重力方法恢复地球重力场及简化动力学方法确定低轨卫星轨道的数学模型,并简单分析和比较现有的几种重力场模型.用CHAMP实测数据,结合现有的重力场模型,系统分析、研究了不同阶次、不同重力场模型对低轨卫星定轨精度的影响;研究了不同间隔的随机速度脉冲在简化动力学方法中对模型误差的吸收、调节作用.计算结果表明,在定轨中,选择合理阶数的、较精确的重力场模型及合理间隔的随机脉冲参数,不但可以提高计算效率,更能提高定轨精度.  相似文献   

20.
GOCE Data Processing: The Spherical Cap Regularization Approach   总被引:3,自引:0,他引:3  
Due to the sun-synchronous orbit of the satellite gravity gradiometry mission GOCE, the measurements will not be globally available. As a consequence, using a set of base functions with global support such as spherical harmonics, the matrix of normal equations tends to be ill-conditioned, leading to weakly determined low-order spherical harmonic coefficients. The corresponding geopotential strongly oscillates at the poles. Considering the special configuration of the GOCE mission, in order to stabilize the normal equations matrix, the Spherical Cap Regularization Approach (SCRA) has been developed. In this approach the geopotential function at the poles is predescribed by an analytical continuous function, which is defined solely in the spatially restricted polar regions. This function could either be based on an existing gravity field model or, alternatively, a low-degree gravity field solution which is adjusted from GOCE observations. Consequently the inversion process is stabilized. The feasibility of the SCRA is evaluated based on a numerical closed-loop simulation, using a realistic GOCE mission scenario. Compared with standard methods such as Kaula and Tikhonov regularization, the SCRA shows a considerably improved performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号