首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments retrieved from a long core on the floor of glacial Lake Assiniboine, Saskatchewan, expose 106 couplets, consisting of thick, light coloured, silt-rich beds and thin, dark, clay-rich beds. The couplets contain sharp lower and upper contacts of the silt bed, silty and clayey laminations within both the silt and clay beds, and ice-rafted debris in the silt beds, which are features characteristic of glacial varves.Seasonal variations in runoff are reflected in grain size profiles of individual silt beds in the varves. Mean grain size maxima in the lower portion of the silt bed suggest that snow accumulation during the previous winter had been substantial and that a warm spring combined with a rapid melting rate generated significant volumes of nival meltwater runoff. Coarse laminae higher in the silty part of the couplet imply that substantial meltwater inflow was produced by summer melting of glacier ice.Vertical trends in clay bed thicknesses, silt bed thicknesses, and total couplet thicknesses were strongly influenced by the proximity of meltwater inflow channels and lake depth. These interpretations, and correlation of the core to varve exposures at the surface, formed the framework for a paleohydrological reconstruction. Close to 11,000 BP, ice dammed the outlet of glacial Lake Assiniboine and the water depth rose about 2 m yr–1. Eventually the lake became deep enough for couplets to form. Varve years 1–40 contain thick clay beds, silt beds, and couplets as a result of the proximal inflow of meltwater. A decline in silt bed and couplet thicknesses from varve years 41–85 occurred in response to ice retreat and more distal inflow. Varve deposition ceased in the shallow part of the basin probably because underflow currents from the distal source were redirected. Varve years 86–106 are distinguished by an increase in silt bed and couplet thicknesses and a decrease in clay bed thickness caused by a reduction in water depth and a return to proximal inflow. Varved sedimentation terminated when Lake Assiniboine drained through the Assiniboine valley to Lake Agassiz.  相似文献   

2.
The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake. Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence. On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During glacial periods, the deep basin sediments of Lake Baikal are dominated by rapidly deposited clastics entering from large rivers with possibly glaciated headwaters. On the sublacustrine Academician Ridge (depth = 300 m), however, detailed analysis of the diatom biostratigraphy indicates that diastems (hiatuses of minor duration) and (or) highly variable rates of accumulation complicate paleolimnologic and paleoclimatic reconstructions from these records.  相似文献   

3.
Glacial Lake Hind was a 4000 km2 ice-marginal lake which formed in southwestern Manitoba during the last deglaciation. It received meltwater from western Manitoba, Saskatchewan, and North Dakota via at least 10 channels, and discharged into glacial Lake Agassiz through the Pembina Spillway. During the early stage of deglaciation in southwestern Manitoba, part of the glacial Lake Hind basin was occupied by glacial Lake Souris which extended into the area from North Dakota. Sediments in the Lake Hind basin consist of deltaic gravels, lacustrine sand, and clayey silt. Much of the uppermost lacustrine sand in the central part of the basin has been reworked into aeolian dunes. No beaches have been recognized in the basin. Around the margins, clayey silt occurs up to a modern elevation of 457 m, and fluvio-deltaic gravels occur at 434–462 m. There are a total of 12 deltas, which can be divided into 3 groups based on elevation of their surfaces: (1) above 450 m along the eastern edge of the basin and in the narrow southern end; (2) between 450 and 442 m at the western edge of the basin; and (3) below 442 m. The earliest stage of glacial Lake Hind began shortly after 12 ka, as a small lake formed between the Souris and Red River lobes in southwestern Manitoba. Two deltas at an elevation of 450 were formed in this lake. At the same time, the Souris Lobe retreated far enough to allow glacial Lake Souris to expand farther north along the western side of the basin from North Dakota into what was to become glacial Lake Hind. Three deltas were built at an elevation above 460 m in the Canadian part of this proglacial lake. Continued ice retreat allowed the merger of glacial Lake Souris with the interlobate glacial Lake Hind to the east. Subsequent erosion of the outlet to the Pembina Spillway allowed waters in the glacial Lake Hind basin to become isolated from glacial Lake Souris, and a new level of glacial Lake Hind was established at 442 m, with 5 deltas built at this level by meltwater runoff from the west. Next, a catastrophic flood from the Moose Mountain uplands in southeastern Saskatchewan flowed through the Souris River valley to glacial Lake Souris, spilling into Lake Hind and depositing another delta. This resulted in further incision of the outlet (Pembina Spillway). A second flood through the Souris Spillway from glacial Lake Regina further eroded the outlet; most of glacial Lake Hind was drained at this time except for the deeper northern part. Coarse gravel was deposited by this flood, which differs from previous flood gravel because it is massive and contains less shale.  相似文献   

4.
Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920–930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka.  相似文献   

5.
Climate change in the northeastern United States has been inferred for the last deglaciation to middle Holocene (∼16,600 to 6000 calendar years ago) using multi-proxy data (total organic matter, total carbonate content, δ18 O calcite and δ13 C calcite) from a 5 m long sediment core from Seneca Lake, New York. Much of the regional postglacial warming occurred during the well-known Bolling and Allerod warm periods (∼14.5 to 13.0 ka), but climate amelioration in the northeastern United States preceded that in Greenland by ∼2000 years. An Oldest Dryas climate event (∼15.1 to 14.7 ka) is recognized in Seneca Lake as is a brief Older Dryas (∼14.1 ka) cold event. This latter cold event correlates with the regional expansion of glacial Lake Iroquois and global meltwater pulse IA. An increase in winter precipitation and a shorter growing season likely characterized the northeastern United States at this time. The Intra-Allerod Cold Period (∼13.2 ka) is also evident supporting an “Amphi-Atlantic Oscillation” at this time. The well-known Younger Dryas cold interval occurred in the northeastern United States between 12.9 and 11.6 ka, consistent with ice core data from Greenland. In the Seneca Lake record, however, the Younger Dryas appears as an asymmetric event characterized by an abrupt, high-amplitude beginning followed by a more gradual recovery. Compared to European records, the Younger Dryas in the northeastern United States was a relatively low-amplitude event. The largest amplitude and longest duration anomaly in the Seneca Lake record occurs after the Younger Dryas, between ∼11.6 and 10.3 ka. This “post-Younger Dryas climate interval” represents the last deglacial climate event prior to the start of the Holocene in the northeastern United States, but has not been recognized in Greenland or Europe. The early to middle Holocene in the northeastern United States was characterized by low-amplitude climate variability. A general warming trend during the Holocene Hypsithermal peaked at ∼9 ka coincident with maximum summer insolation controlled by orbital parameters. Millennial- to century-scale variability is also evident in the Holocene Seneca Lake record, including the well-known 8.2 ka cold event (as well as events at ∼7.1 and 6.6 ka). Hemispherical cooling during the Holocene Neoglacial in the northeastern United States began ∼5.5 ka in response to decreasing summer insolation.  相似文献   

6.
ABSTRACT. This paper examines new geomorphological, chronological and modelling data on glacier fluctuations in southernmost South America in latitudes 46–55°S during the last glacial–interglacial transition. Establishing leads and lags between the northern and southern hemispheres and between southern mid‐latitudes and Antarctica is key to an appreciation of the mechanisms and resilience of global climate. This is particularly important in the southern hemisphere where there is a paucity of empirical data. The overall structure of the last glacial cycle in Patagonia has a northern hemisphere signal. Glaciers reached or approached their Last Glacial Maxima on two or more occasions at 25–23 ka (calendar) and there was a third less extensive advance at 17.5 ka. Deglaciation occurred in two steps at 17.5 ka and at 11.4 ka. This structure is the same as that recognized in the northern hemisphere and taking place in spite of glacier advances occurring at a time of high southern hemisphere summer insolation and deglaciation at a time of decreasing summer insolation. The implication is that at orbital time scales the‘northern’ signal dominates any southern hemisphere signal. During deglaciation, at a millennial scale, the glacier fluctuations mirror an antiphase 'southern’ climatic signal as revealed in Antarctic ice cores. There is a glacier advance coincident with the Antarctic Cold Reversal at 15.3–12.2 ka. Furthermore, deglaciation begins in the middle of the Younger Dryas. The implication is that, during the last glacial–interglacial transition, southernmost South America was under the influence of sea surface temperatures, sea ice and southern westerlies responding to conditions in the 'southern’ Antarctic domain. Such asynchrony may reflect a situation whereby, during deglaciation, the world is more sensitized to fluctuations in the oceanic thermohaline circulation, perhaps related to the bipolar seesaw, than at orbital timescales.  相似文献   

7.
末次冰盛期时吉兰泰盐湖的湖泊状态与古气候特征   总被引:1,自引:1,他引:0  
通过现代季风边缘区的吉兰泰盐湖钻孔JLT11-A孔沉积岩芯的矿物分析,结合地层盘星藻的含量探讨末次冰盛期(LGM)时湖泊的状态和古气候特征。结果显示:在LGM时吉兰泰湖泊沉积矿物主要是石英、长石为主的碎屑岩沉积,含量在85%左右,显示出陆源碎屑矿物的高输入状态,可能指示区域寒冷干旱的环境;其次是以方解石为主的碳酸盐的沉积,含量约为10%;氯化物为主的石盐类矿物一般不足5%,但持续存在,指示湖泊仍然有较高的盐度,因此地层中的淡水藻类盘星藻可能是由河流输入。由于陆源碎屑矿物输入强烈,矿物组合可能难以直接指示吉兰泰盐湖湖水状态。区域的干冷的气候与大多数的古气候记录一致,而与新疆西部的冷湿的环境不同。对比邻近区域的古气候研究结果发现,本区域在LGM时段夏季降水相对于冰消期偏多,而相对于MIS3阶段晚期偏少,整体夏季风减弱。吉兰泰盐湖末次冰盛期到末次冰消期以来矿物组合的变化表明,湖泊环境可能受到夏季太阳辐射、全球与区域温度变化以及夏季风强弱变化的影响。  相似文献   

8.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

9.
Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age.Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.  相似文献   

10.
In the western part of the Canadian Prairies, there are thousands of small, closed-basin saline lakes. Most of these lakes are ephemeral, filling with water during the spring and drying completely by late summer. Ceylon Lake, located in southern Saskatchewan, is typical of many of these shallow ephemeral lacustrine basins. The stratigraphic sequence recovered from this salt playa can be subdivided into six distinct facies types: (a) icelaid gravelly clay loam diamicton; (b) fluvial massive bedded to laminated sand; (c) lacustrine laminated calcareous clay and silt; (d) lacustrine laminated gypsiferous clay and silt; (e) lacustrine black, anoxic, nonlaminated, organic-rich mud; and (f) lacustrine salt. The crystalline salt facies, which can be up to 9 meters thick, is comprised mainly of sodium and sodium + magnesium sulfates, with smaller and more variable proportions of other sulfates, halides, carbonates, and insoluble clastic detritus.Although a variety of postdepositional processes have significantly altered the nature and stratigraphic relationships in the basin, the sediment fill does record, in a general way, the fluctuating depositional, hydrological, and geochemical conditions that existed in the basin since deglaciation. The Ceylon Lake basin originated about 15 000 years ago as meltwater from the retreating glacial ice cut a major spillway system in the drift and bedrock. The initial (early Holocene) phases of lacustrine sedimentation in Ceylon Lake occurred in a relatively deep freshwater lake. By about 6000 years B.P., the lake had become much shallower with numerous episodes of complete drying and subaerial exposure. The most recent 5000 years of deposition in the basin have been dominated by evaporite sedimentation. The composition of the soluble salts deposited during this time indicates some degree of cyclic sedimentation superimposed on an overall gradual shift from a sodium dominated brine to one of mixed sodium and magnesium.  相似文献   

11.
青藏高原东部当子沟末次冰期冰川演化光释光测年   总被引:1,自引:0,他引:1  
青藏高原东部横断山脉沙鲁里山北支雀儿山北麓的当子沟, 保留了4 组末次冰期冰碛垄, 每组冰碛垄由若干道小冰碛垄组成, 是末次冰期多次冰川波动的理想地貌证据。为恢复该地末次冰期冰川演化历史, 从这4 组冰碛垄中采集了7 个光释光测年样品进行年代测定。等效剂量采用单片再生法(SAR)和标准生长曲线法(SGC)进行测试。年代结果显示:第1~3 组冰碛垄形成于22.4-16.5 ka BP, 属深海氧同位素2 阶段(MIS-2), 大致与全球末次盛冰期(LGM)相当。第4 组冰碛垄形成于MIS-3。MIS-3 冰川规模大于MIS-2。第1~3 组9 道次一级小冰碛垄表明, 约在22.4-16.5 ka BP期间当子沟冰川经历了9 次小波动。冰川在稍早于22.4 ka BP达到MIS-2 的最大范围, 此后规模在波动中逐渐萎缩, 可能是冰川对MIS-2 后期太阳辐射增强、气温回升的响应。最里侧冰碛垄形成于16.5 kaBP, 可能标志着该地冰消期的开始。此后, 当子沟冰川大幅快速退缩。冰川融水在最里侧冰碛垄里侧低洼谷地汇集并被阻塞形成当子错。  相似文献   

12.
共和盆地末次冰消期以来的植被和环境演变   总被引:10,自引:1,他引:9  
程波  陈发虎  张家武 《地理学报》2010,65(11):1336-1344
在青藏高原共和盆地中的内陆湖泊--达连海获取40.92 m长的湖泊岩芯(DLH钻孔),选用植物残体作为测年材料,利用AMS14C测年技术建立可靠的地层年代序列,对岩芯进行孢粉分析,重建该地末次冰消期以来的古植被和古环境。末次冰消期以来达连海周围山地在14.8~12.9Cal ka BP和9.4~3.9 Cal ka BP时段曾发育森林,气候较湿润,达连海附近盆地发育的荒漠草原盖度增加或演化为草原;在15.8~14.8 Cal ka BP、12.9~9.4 Cal ka BP 和3.9~1.4 Cal ka BP 时段该地气候比较干旱,依据干旱的程度周围山地森林退化或消失,盆地内发育盖度较低的荒漠草原或草原化荒漠。1.4 Cal ka BP以来湿度有所增加,发育草原植被类型。依据植被的演替历史推断该地气候的变化历程是15.8~14.8 Cal ka BP 干旱,14.8~12.9 Cal ka BP 湿润,12.9~9.4 Cal ka BP干旱,9.4~3.9 Cal ka BP湿润,3.9~1.4 Cal ka BP干旱,1.4~0 Cal ka BP湿润。达连海的孢粉记录与附近青海湖的孢粉结果对比,发现两地植被发育基本一致。末次冰消期Bølling-Allerød 时期,山地森林发育;新仙女木事件发生时森林萎缩;全新世中期两地针叶林发育达到鼎盛,之后逐渐减少至消失。早全新世达连海森林扩张的时间滞后于青海湖,主要与两地森林树种的不同和植被演替的时间差异有关。该区森林发育的全盛时期在中全新世,这与石笋记录到的亚洲季风强盛时期在早全新世不相一致,可能与植被复杂的响应机制有关。  相似文献   

13.
A continuous record of lacustrine sedimentation capturing the entire full-glacial period was obtained from Arolik Lake in the Ahklun Mountains, southwestern Alaska. Fluctuations in magnetic susceptibility (MS), grain size, organic-matter (OM) content, C/N ratios, 13C, and biogenic silica (BSi) record marked environmental changes within the lake and its watershed during the last 33 cal ka. Age control is provided by 31 14C ages on plant macrofossils in four cores between 5.2 and 8.6 m long. Major stratigraphic units are traceable throughout the lake subbottom in acoustical profiles, and provisional ages are derived for six prominent tephra beds, which are correlated among the cores. During the interstadial interval between 33 and 30 cal ka, OM and BSi contents are relatively high with values similar to those of the Pleistocene–Holocene transition, suggesting a similar level of aquatic productivity. During the glacial interval that followed (30–15 cal ka), OM and BSi decrease in parallel with declining summer insolation. OM and BSi values remain relatively uniform compared with the higher variability before and after this interval, and they show no major shifts that might correlate with climate fluctuations evidenced by the local moraine record, nor with other global climate changes. The glacial interval includes a clay-rich unit with a depauperate diatom assemblage that records the meltwater spillover of an ice-dammed lake. The meltwater pulse, and therefore the maximum extent of ice attained by a major outlet glacier of the Ahklun Mountain ice cap, lasted from 24 to 22 cal ka. The Pleistocene–Holocene transition (15–11 cal ka) exhibits the most prominent shifts in OM and BSi, but rapid and dramatic fluctuations in OM and BSi continue throughout the Holocene, indicating pronounced paleoenvrionmental changes.  相似文献   

14.
This paper deals with the investigation of the upper 11.6 m portion of a long drill core (KDP-01) taken from the bottom sediments of Lake Khubsugul. Ostracod species and their assemblages recovered from the core were analyzed. The data are compared with the carbonate and sulfate values obtained from bulk sediment, as well as with the flux of the coarse terrigenous fraction (>200 m) from the same core. Based on the previously calculated depth-age sedimentary model, the oldest age of the core studied here is about 230 ka. The four ostracod species recovered in the core are Cytherissa lacustris, Candona lepnevae, Limnocythere inopinata and Leucocythere sp. According to the distribution of those ostracods, we distinguish four main periods, each of about 50 ka long. Based on the ecological requirements of extant ostracods, two assemblages typifying a low water level and high salinity, on the first hand, and another representing freshwater and high lake level are recognized. The first “high salinity” ostracods correspond to “cold” periods as seen globally, while “freshwater” ostracods are associated with interglacials. Ostracod valves are absent during interglacial optima. This may be due to chemical dissolution of calcium carbonate related to organic matter decay at the initial stages of diagenesis, probably because during interglacials, in contrast to glacials, organic matter flux reaching the lake bottom were significantly higher. The periodicity in the development of ostracod species assemblages follows 17, 24 and 47 ka cycles related to orbital forcing. Its diversity is correlated with summer temperature fluctuations in northern altitudes for the past 230 ka. The maximum in species diversity follows the temperature maxima, by about 1.5 and 2 ka. Overall, the data obtained demonstrate a correlation between climatic changes and variations in specific and quantitative ratios of ostracod species during the last 230 ka.  相似文献   

15.
刘向军 《盐湖研究》2018,26(2):16-26
青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11~8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度的波动。全新世气候适宜期出现在8~6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。  相似文献   

16.
The inorganic geochemistry of sediments from El’gygytgyn Lake shift in phase with interpreted paleoclimatic fluctuations seen in the record over the past 250 ka. Warm periods, when the lake was seasonally ice free and fully mixed, are characterized by increased concentrations of SiO2, CaO, Na2O, K2O, and Rb, by decreased contents of TiO2, Fe2O3, Al2O3, and MgO, and by a lower chemical index of alteration (CIA). Increased levels of SiO2 reflect increases in limnic productivity whereas many of the other elements and the CIA likely reflect increased hydrological activity coincident with an increase in coarser sand and silt content and a decrease in clay mineral content. For cold/cooler periods when perennial lake ice cover lead to a stratifed water column and anoxic bottom waters, the opposite is generally observed suggesting a decrease in hydrological activity and an increase in post-depositional chemical alteration. Peaks in P2O3 and MnO, coincident with an increased abundance of vivianite, suggest possible linkages to the paleoproductivity of local fish fauna regardless of climate change across the region surrounding Lake El’gygytgyn. Strontium is high in concentration during warmer intervals and may also be linked to paleoproductivity. Enrichment of the post-Eemian portion of the sediment record in niobium, and yttrium appears independent of glacial–interglacial change; rather it may reflect a gradual shift in the geomorphology of the catchment, particularly the hydrology of large alluvial fans along the western side of the lake. In contrast to some lake records, changes in Zr concentration over time suggests only a weak, if any, increase in eolian sediment supply during colder periods. This is the first in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

17.
鄱阳湖湖滨地区广泛分布着晚第四纪风沙沉积序列。在星子县沙岭沙山进行野外调查后选择蓼花剖面开展工作,测试了地质时代和粒度,对粒度结果使用端元分析模型进行研究,探讨该区域末次冰期中晚期的气候变化规律。结果显示:该剖面由湖相-古土壤-沙丘砂等沉积相叠覆堆积组成,形成于末次冰期中晚期(48.8—17.1 ka)。端元分析模型将粒度数据分解出3个不同的粒度端元,不同端元组分在垂向上呈峰谷交替的旋回变化,EM1代表粉砂端元组分,峰值对应湖相和古土壤发育时期;EM2和EM3代表中砂—粗砂端元组分,峰值对应沙丘砂发育期,这些峰谷交替变化的规律指示了末次冰期的季风演变以及气候波动变化,万年尺度上表现为LH10 (48.8—39.9 ka)和LH3~LH5 (28.1—17.1 ka)的冬季风强盛期,分别对应深海氧同位素的MIS3b和MIS2阶段。LH6~LH9 (39.9—28.1 ka)为温暖的夏季风时期,对应深海氧同位素的MIS3a阶段。这些变化与YZ洞石笋氧同位素以及格陵兰冰心有良好的对应,与全球气候变化基本一致。  相似文献   

18.
Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.  相似文献   

19.
A combined analysis of magnetic susceptibility, total organic carbon (TOC), biogenic silica (opal), and TiO2 content of the 12.6 m long composite core PG1351 recovered from Lake El’gygytgyn, Chukotka Peninsula, indicate a clear response of the lacustrine sedimentary record to climate variations. The impact is not direct, but through variations in oxygenation of the bottom waters. Mixing of the water body is typical for warmer climates, whereas the development of a stratified water body associated with anoxic conditions at the lake floor appears during cold climates. Oxic conditions lead to a good magnetite preservation and thus to high magnetic susceptibilities, but also to a large-scale degradation of organic matter, as reflected by low TOC (total organic carbon) values. During anoxic conditions, magnetite is severely dissolved yielding very low susceptibility values, whereas organic matter is best preserved, reflected by high TOC values. Hence, in general, neither susceptibility reflects the lithogenic fraction, nor does TOC reflect bioproductivity in case of the studied El’gygytgyn sediments. Based on available infrared stimulated luminescence (IRSL) dating, the obtained susceptibility pattern of core PG1351 shows an obvious correlation to northern hemisphere insolation variations, with a dominating impact of the Earth’s 18 and 23 kyr precessional cycles for the upper half of PG1351, that is, during the past 150 ka. Therefore, the whole susceptibility record, together with biogenic silica (as a proxy for bioproductivity), TOC (as an indicator for redox conditions), and TiO2 (as a proxy for lithogenic input), was systematically tuned to the northern hemisphere insolation yielding an age of about 250 ka for the base of the composite core. This is the fifth in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

20.
Two cores were recovered from raised peat bogs on the tropical northern Leizhou Peninsula, south China. Multiple sediment variables including organic matter (OM) content, the stable carbon isotope signature of OM, low-frequency magnetic susceptibility and degree of humification, indicate that the regional paleoclimate played an important role in determining the nature of peat that accumulated. Based on comparison with other climate proxies, the bulk peat δ13C record was interpreted as an indicator of variation in the East Asian (EA) summer monsoon, and to a lesser extent, the Indian summer monsoon, during the last glacial period between ~49 and 10 cal ka BP. More negative bulk δ13C values reflect wetter and warmer conditions, and thus a strong EA summer monsoon. More positive values indicate drier and cooler conditions. A warm and wet period occurred between ~46 and 28 cal ka BP, implying a strengthening of the EA summer monsoon. A climate shift occurred at ~22 cal ka BP and the driest and coldest period appeared between ~19 and 16 cal ka BP, suggesting weakening of the EA summer monsoon. After ~12 cal ka BP, climate shifted towards wetter and warmer conditions again. It has been suggested that variations in orbitally induced solar insolation played a role in the last glacial climate of the study region. Several millennial—scale arid and cold phases characterized by C4 plants, or by more positive δ13C values during periods when C3 plants dominated, show agreement with the Greenland GISP2 ice core and the Chinese stalagmite records. Interactions between high northern latitude cold air advection and summer moisture transported across the tropical ocean, and the migration of the mean position of the Intertropical Convergence Zone (ITCZ) would have favored these millennial–scale phases. Additionally, changes in heat transport to the North Atlantic would also have influenced climate in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号