首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of such waves due to phase mixing at the presence of shear flow and field in the stratified atmosphere of solar spicules. The initial flow is assumed to be directed along spicule axis and to vary linearly in the x direction and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that the shear flow and field can fasten the damping of standing Alfvén waves. In spite of propagating Alfvén waves, standing Alfvén waves in Solar spicules dissipate in a few periods. As height increases, the perturbed velocity amplitude does increase in contrast to the behavior of perturbed magnetic field. Moreover, it should be emphasized that the stratification due to gravity, shear flow and field are the facts that should be considered in MHD models in spicules.  相似文献   

2.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we investigate the parametric generation of acoustic-gravity disturbances by Alfvén waves propagating along the corresponding field lines. We established that for a weak linear coupling of Alfvén waves, the nonlinear interaction of Alfvén waves propagating in opposite directions (rather than in the same direction) is the predominant generation mechanism of acoustic-gravity disturbances at the difference frequency. In this case, no acoustic flow (wind) was found to emerge at a zero difference frequency in the acoustic-gravity field.  相似文献   

3.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of standing Alfvén waves due to phase mixing at the presence of steady flow and sheared magnetic field in the stratified atmosphere of solar spicules. The transition region between chromosphere and corona has also been considered. The initial flow is assumed to be directed along spicule axis, and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that in contrast to propagating Alfvén waves, standing Alfvén waves dissipate in time rather than in space. Density gradients and sheared magnetic fields can enhance damping due to phase mixing. Damping times deduced from our numerical calculations are in good agreement with spicule lifetimes. Since spicules are short living and transient structures, such a fast dissipation mechanism is needed to transport their energy to the corona.  相似文献   

4.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we considered the nonlinear interaction between vertically propagating Alfvén and acoustic-gravity waves. We established that Alfvén waves are efficiently generated at the difference and sum frequencies. We ascertained that no acoustic-gravity waves are formed at the corresponding combination frequencies. A horizontal magnetohydrodynamic wind whose direction changes with height was found to be formed in the solar atmosphere at zero difference frequency.  相似文献   

5.
Under the geometrical optics approximation we discuss the propagation of a polarized magnetic profile, made up of Alfvén waves, in the solar wind. We show that (i) the profile propagates at an angle to the radial direction (the direction of the solar wind flow), (ii) the radial half-width of the profile stays essentially constant, or even diminishes a little, with distance from the Sun, (iii) the half-width in a direction transverse to the radial direction increases without limit as the magnetic profile moves outward from the Sun. Thus the profile stretches out into a ‘ribbon’ which could, of course, be experimentally identified as a discontinuity. We also give equations for the variation of polarization of the profile, and illustrate the behavior of polarization in a simple case. We have done these calculations to show that the production of ‘discontinuities’ in the solar wind can arise from propagation effects on irregularly shaped ‘blobs’ of magnetic field, as well as from other causes.  相似文献   

6.
We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.  相似文献   

7.
We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find reduction in the damping length scale, group velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R) where these may be one of the primary energy sources, which can convert the inflow of the solar wind into the outflow. In the outer region (> 1.21 R), for any propagation angle, the energy flux density peaks match with the peaks of MgX 609.78 Å and 624.78 Å linewidths observed from the Coronal Diagnostic Spectrometer (CDS) on SOHO and the non-thermal velocity derived from these observations, justify the observed spectroscopic signature of the Alfvén wave dissipation.  相似文献   

8.
A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance or enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology.  相似文献   

9.
We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts.  相似文献   

10.
We have recently passed the 75th anniversary of one of the most important results in solar and space physics: Hannes Alfvén’s discovery of Alfvén waves and the Alfvén speed. To celebrate the anniversary, this article recounts some major episodes in the history of magnetohydrodynamic (MHD) waves. Following an initially cool reception, Alfvén’s ideas were propelled into the spotlight by Fermi’s work on cosmic rays, the new mystery of coronal heating, and, as scientific perception of interplanetary space shifted dramatically and the space race started, detection of Alfvén waves in the solar wind. From then on, interest in MHD waves boomed, laying the foundations for modern remote observations of MHD waves in the Sun, coronal seismology, and some of today’s leading theories of coronal heating and solar wind acceleration. In 1970, Alfvén received the Nobel Prize for his work in MHD, including these discoveries. The article concludes with some reflection about what the history implies about the way we do science, especially the advantages and pitfalls of idealised mathematical models.  相似文献   

11.
C. B. Wang  Bin Wang  L. C. Lee 《Solar physics》2014,289(10):3895-3916
A scenario is proposed to explain the preferential heating of minor ions and differential-streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test-particle simulations that minor ions can be nearly fully picked up by intrinsic Alfvén-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high-frequency ion-cyclotron waves and low-frequency Alfvén waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave–particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the low-frequency Alfvén waves. As a result, the ion is picked up by these Alfvén-cyclotron waves. However, minor ions can only be partially picked up in the corona because of the low wave energy density and low plasma β. During the pickup process, minor ions are stochastically heated and accelerated by Alfvén-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfvén waves and ion-cyclotron waves is important in the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in-situ and remote features observed in the solar wind and solar corona.  相似文献   

12.
Excess heating of the active region solar atmosphere is interpreted by the decay of MHD slow-mode waves produced in the corona through the non-linear coupling of Alfvén waves supplied from subphotospheric layers. It is stressed that the Alfvén-mode waves may be very efficiently generated directly in the convection layer under the photosphere in magnetic regions, and that such magnetic regions, at the same time, provide the ‘transparent windows’ for Alfvén waves in regard to the Joule and frictional dissipations in the photospheric and subphotospheric layers. Though the Alfvén waves suffer considerable reflection in the chromosphere and in the transition layer, a certain fraction of this large flux is propagated out to the corona, and a large velocity amplitude exceeding the local Alfvén velocity is attained during the propagation along the magnetic tubes of force into a region of lower density and weaker magnetic field. The otherwise divergence-free velocity field in Alfvén waves gets involved in such a case with a compressional component (slow-mode waves) which again is of considerable velocity amplitude relative to the local acoustic velocity when estimated by using the formulation for non-linear coupling between MHD wave modes derived by Kaburaki and Uchida (1971). Therefore, the compressional waves thus produced through the non-linear coupling of Alvén waves will eventually be thermalized to provide a heat source. The introduction of this non-linear coupling process and the subsequent thermalization of thus produced slow-mode waves may provide means of converting the otherwise dissipation-free Alfvén mode energy into heat in the corona. The liberated heat will readily be redistributed by conduction along the magnetic lines of force, with higher density as a consequence of increased scale height, and thus the loop-like structure of the coronal condensations (or probably also the thread-like feature of the general corona) may be explained in a natural fashion.  相似文献   

13.
We study a nonlinear mechanism for the excitation of kinetic Alfvén waves (KAWs) by fast magneto-acoustic waves (FWs) in the solar atmosphere. Our focus is on the excitation of KAWs that have very small wavelengths in the direction perpendicular to the background magnetic field. Because of their small perpendicular length scales, these waves are very efficient in the energy exchange with plasmas and other waves. We show that the nonlinear coupling of the energy of the finite-amplitude FWs to the small-scale KAWs can be much faster than other dissipation mechanisms for fast wave, such as electron viscous damping, Landau damping, and modulational instability. The nonlinear damping of the FWs due to decay FW = KAW + KAW places a limit on the amplitude of the magnetic field in the fast waves in the solar corona and solar-wind at the level B/B 0∼10−2. In turn, the nonlinearly excited small-scale KAWs undergo strong dissipation due to resistive or Landau damping and can provide coronal and solar-wind heating. The transient coronal heating observed by Yohkoh and SOHO may be produced by the kinetic Alfvén waves that are excited by parametric decay of fast waves propagating from the reconnection sites.  相似文献   

14.
Kinetic theory is used to calculate the power dissipated by obliquely propagating Alfvén waves to heat the solar wind protons, using the Generalized (r, q) distribution function. The evolution of power dissipation of protons with increasing heliocentric distance is subsequently determined. Comparison between theoretical and observational results with data shows good agreement, especially for the slow solar wind streams. Previous results where a Maxwellian distribution function was used to calculate the power dissipated did not match well with observations.  相似文献   

15.
The problem of phase mixing of shear Alfvén waves is revisited taking into account dissipative phenomena specific for the solar corona. In regions of space plasmas where the dynamics is controlled by the magnetic field, transport coefficients become anisotropic with transport mechanism having different behavior and magnitude depending on the orientation with respect to the ambient magnetic field. Taking into account realistic values for dissipative coefficients we obtain that the previous results derived in context of torsional Alfvén wave phase mixing are actually heavily underestimated so phase mixing cannot be used to explain the damping of torsional Alfvén waves and heating of open coronal structures. The presented results indicate that in order for phase mixing to still be a viable mechanism to explain heating or wave damping unrealistic assumptions have to be made. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfvén waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly open fieldlines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high-frequency component associated with the current sheet/reconnection site and an extended low-frequency component associated with the large-scale torsional Alfvén wave generated from the interchange reconnection field restructuring. The characteristic wavelengths of the torsional Alfvén wave reflect the spatial size of the energized bipolar flux region. Lastly, we discuss avenues of future research by modeling these interchange reconnection-driven waves and investigating their observational signatures.  相似文献   

17.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

18.
We consider the problem of long-time storage of high-energy protons, accelerated in the process of a flare, in coronal magnetic traps. From the viewpoint of the storage, one of the most important plasma instabilities is the kinetic cyclotron instability of the Alfvén waves. We carry out a detailed theoretical analysis of the instability for typical conditions of the solar corona. It is the refraction of the Alfvén waves in combination with a drastic decrease of the instability growth rate with an increase of the angle between the directions of the wave vector and the stationary magnetic field that leads to the possibility of the long-term storage of the flare protons. Sufficient conditions of the storage are determined.  相似文献   

19.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Recent observations by Hinode/SOT showed that the spicules mostly exhibit upward propagating high frequency waves. Here we investigate the dissipation of such waves due to phase mixing in stratified environment of solar spicules. Since they are highly dynamic structures with speeds at about significant fractions of the Alfvén phase speed, we take into account the effects of steady flows. Our numerical simulations show that in the presence of stratification due to gravity, damping takes place in space than in time. The exponential damping low, \operatornameexp(-\operatornameAt3)\operatorname{exp}(-\operatorname{At}^{3}), is valid under spicule conditions, however the calculated damping time is much longer than the reported spicule lifetimes from observations.  相似文献   

20.
Many types of ULF pulsations observed at geosynchronous orbit exhibit properties of standing shear Alfvén waves. Observation of the harmonic mode, polarization state and azimuthal wave number is crucial for determining the source of energy responsible for excitation of these waves. In recent years it has become possible to identify the harmonic mode of standing waves from dynamic spectral analysis, as well as simultaneous observations of electric and magnetic fields of the waves or a comparison between plasma mass density estimated from the frequency of the waves and that observed by direct measurement. It is then more reasonable to classify pulsations according to their physical properties, including the harmonic mode, polarization state, azimuthal wave number, and localization in occurrence, than according to the conventional scheme based on the wave form and period range. From analysis of magnetic pulsations observed at geosynchronous orbit, at least two distinctively different types of waves have been identified. One is azimuthally polarized waves simultaneously excited at the fundamental and several harmonics of a standing Alfvén wave which are observed throughout the day side. They have relatively small azimuthal numbers (less than 10) and propagate tailward. They are likely to be excited by the interaction of the solar wind with the magnetopause or bow shock. Another type is radially polarized waves most strongly excited at the second harmonic. They are observed mainly on the afternoon side. Bounce resonance of a few keV ions has been suggested as the mechanism for excitation of the radially polarized waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号