首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An indirect proton flux measuring tool based on discrimination of the energy deposited by protons in 128 × 128 pixel EIT CCD areas outside the solar disk images is presented. Single pixel intensity events are converted into proton incident energy flux using modeled energy deposition curves for angles of incidence ±60° in four EIT spatial areas with different proton stopping power. The extracted proton flux is corrected for both the loss of one‐pixel events in the range of angles of incidence as well as for the contribution to the single pixel events resulting from scattered middle‐energy protons (low‐energy or high‐energy particles are stopped by the EIT components or pass through them, accordingly). A simple geometrical approach was found and applied to correct for a non‐unique relation between the proton‐associated CCD output signal and the incident proton energy. With this geometrical approximation four unique proton incident energy ranges were determined as 45–49, 145–154, 297–335, and 390–440 MeV. The indirect proton flux measuring tool has been tested by comparing Solar Energetic Particles (SEP) flux temporal profiles extracted from the EIT CCD frames and downloaded from the GOES database for the Bastille Day (BD) of 2000 July 14 and the more recent 2005 January 20 events. The SEP flux temporal profiles and proton spectra extracted from the EIT in the relatively narrow energy ranges between 45 and 440 MeV reported here are consistent with the related GOES profiles. The four additional EIT extracted ranges provide higher energy resolution of the SEP data. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Astroparticle Physics》2010,33(6):286-293
In the past, there have been reports of the observation of decrease in the flux of secondary cosmic γ-rays during a total solar eclipse. We have measured the flux of secondary cosmic γ-rays during the total solar eclipse that occurred at Novosibirsk in Russia, on 1 August 2008. Highly sensitive measurements were carried out by using a detector system with built-in redundancy. The system consisted of two independent, large volume NaI(Tl) scintillator detectors for sensitive and reliable measurements. The data display significant variability in the flux of secondary γ-rays in the energy range 50–4600 keV. Just prior to the total solar eclipse a change ∼9% in the flux was observed, followed by a small but steady decrease ∼4% during the eclipse. The temporal variation in the observed flux of γ-rays were found to be nearly identical for the two detectors. The energy dependence of the variation was further studied by binning the yield in three energy ranges, namely, 100–200, 200–400 and 400–4600 keV. The nearly identical time variation observed in the two independent measurements provides confidence that the measured variation is real and not an artifact of the instrumentation. Systematic observations during the future eclipses are required to study this fascinating phenomenon which is not yet understood.  相似文献   

3.
Thermal equilibrium and hydrostatic equilibrium are mutually exclusive for any particular quantum state of an atmospheric constituent in a non-isothermal atmosphere. As a result, there is a flux of rotationally, vibrationally, and electronically excited atoms and molecules down the temperature gradient, balanced by an up-gradient transport of ground-state atoms and molecules, resulting in a net transport of excitation energy, but with no net mass transport. The energy flux is first formulated as a molecular process and applied to vibrationally excited molecular nitrogen and rotationally excited atomic oxygen in the Earth's lower thermosphere, then reformulated as a bulk process and applied to the Venusian atmosphere, where it is shown that the CO2 vibrational flux is a significant contribution to the total eddy energy flux in the 0–60 km region.  相似文献   

4.
The plasma oscillations that can be observed by the French incoherent scatter system have small phase velocities and are excited by low energy photoelectrons, typically 2–5 eV. Consequently, the method used to determine the energy photoelectron distribution from plasma line measurements made at other observatories (e.g. Cicerone, 1974) cannot be applied here: it is necessary to chose a model energy distribution with a small number of parameters. The energy shape of the flux is assumed Maxwellian and the angular shape is assumed linear with the cosine of the pitch angle. Total flux values and mean energies are obtained as a function of altitude, in agreement with other determinations, and the difference between upshifted and downshifted plasma line intensities lead to the determination of the anisotropy of the photoelectron flux.  相似文献   

5.
Mullan  D. J. 《Solar physics》1974,38(1):9-13
Solar Physics - Although magnetic convection in all probability does operate inside the Sun, the energy flux which it can carry is 5–6 orders of magnitude smaller than the total solar flux....  相似文献   

6.
The plasma lines observed by the French incoherent scatter radar during the period 1973–1974 are studied. Two methods are used to determine the steady-state photoelectron flux from plasma line measurements; one using a Maxwellian model for the photoelectron distribution and the other by solving (numerically) the differential equation that is satisfied by the distribution.The direct numerical calculation of the photoelectron flux is used to obtain theoretical kTp values which are compared with those from the plasma line observation. The comparison leads to the conclusion that there must be a sharp increase of the photoelectron flux when the energy decreases below 4 ~ 5 eV.This result, in agreement with rocket and satellite measurements of the low energy photoelectron flux, is used to bear a new insight to the problem of the electron-gas heat balance: the problem is reduced to the need of an additional photoelectron flux production below 5 eV.  相似文献   

7.
Radio observations of young supernova remnants (SNRs) can shed light on the early evolution of SNRs. We selected G1.9+0.3 which is the youngest SNR in the Milky Way Galaxy for a study. We compiled the radio flux densities currently available and converted them to the same frequency, which leaves us the evolution of the flux density for the past nearly 50 years. We found that the flux density increased before 2008 and decreased afterwards, meaning the flux density reaching the maximum at an age of about 150–155 yr. We attributed the brightening of the SNR to the increase of either magnetic field or the accelerated high energy electrons. Based on the age at which the flux density reached the peak, combined with the previous numerical simulation, we discussed the ejecta mass of the supernova and kinetic energy released by the supernova explosion.  相似文献   

8.
It is shown that the correlation takes place between the 4–7 MeV gamma–ray line flare fluence F4–7 and the intensity of the > 10 MeV proton flux in the interplanetary space as well as between F4–7 and the peak flux density of microwave bursts. Besides, the energy spectral index of protons displays the definite dependence from parameters of the radio burst frequency spectrum. These testify that: a) there is a close physical association between the acceleration of electrons and protons in flares; b) protons, giving gamma–ray lines, and ones, registered in the interplanetary space, belong to the same population.  相似文献   

9.
The 30 MHz absorption observed by a network of wide-beam riometers in Scandinavia is compared to the expected absorption calcvlated on the basis of simultaneously observed fluxes of precipitating electrons in the 10–80 keV energy band at geostationary distance and in magnetic coincidence with the riometer network. By choosing a reasonable altitude profile of the effective recombination coefficient, it is found to be possible to match the observed and calculated absorptions. Further calculations indicate that precipitating electrons of higher energy may be responsible for some of the observed absorption. An empirical law is given which relates the observed absorption to the energy flux of 40–80 keV electrons incident on the atmosphere.  相似文献   

10.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

11.
《Planetary and Space Science》1999,47(3-4):557-576
A significant flux enhancement in energetic particles (E ∼ 60–⩾260 keV),showing internal fine structure interpreted to represent signatures produced during the traversalof various cometary boundaries in P⧸Grigg-Skjellerup, was recorded by the EPONA instrumentaboard spacecraft Giotto on 10 July 1992. A further internally structured flux enhancement withabout the same amplitude, recorded by EPONA in the energy range ∼60–100 keV but detected90×103 km further on along the Giotto trajectory, is herein compared with theP⧸Grigg-Skjellerup record. Possible explanations for the second flux enhancement areindividually considered and it is suggested, on the basis of the available evidence, that itconstituted the signature of another smaller comet, either having a separate genesis from, ororiginating in a splitting of, the P⧸Grigg-Skjellerup nucleus.  相似文献   

12.
A very high energy gamma flux from the Mrk 501 source was recorded during observations with the GT-48 gamma-telescope in 2009 with a high confidence level (Q > 4). These data are compared with the RXTE-ASM data on X-radiation in the 2–10 keV range and with the Fermi data (100 MeV–300GeV). The absence of temporal variations in the fluxes is noted in three energy ranges within the experimental error.  相似文献   

13.
《Astroparticle Physics》2002,16(3):271-276
It has been suggested that cosmological γ-ray bursts (GRBs) can produce the observed flux of cosmic rays at the highest energies. However, recent studies of GRBs indicate that their redshift distribution likely follows the average star formation rate of the universe and that GRBs were more numerous at high redshifts. As a consequence, we show that photomeson production energy losses suffered by ultrahigh energy cosmic rays coming from GRBs would produce too sharp a spectral energy cutoff to be consistent with the air shower data. Futhermore, we show that cosmolgical GRBs fail to supply the energy input required to account for the cosmic ray flux above 1019 eV by a factor of 100–1000.  相似文献   

14.
We present the observations of Cygnus X-3 carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in 1994–1995. The mean gamma-ray flux at energy E>1012 eV is shown to be approximately equal to 1.3×10?11 cm?2 s?1. The flux in 1994 was much lower than that in 1995, being (6.2±2.6)×10?12 cm?2 s?1; i.e., it was statistically insignificant. The flux in 1995 was (2.7±0.7)×10?11 cm?2 s?1. Thus, the very high energy gamma-ray emission from Cyg X-3 is variable. These measurement results can be used to obtain upper limits on the flux from Cyg X-3 in 1994–1995.  相似文献   

15.
We present the preliminary results of our analysis of the observations of the X-ray pulsar SAX J2103.5+4545 by the INTEGRAL Observatory in December 2002. We mapped this region of the sky in a wide energy range, from 3 to 200 keV. The detection of the source is shown to be significant up to energies of ~100 keV. The hard X-ray flux in the energy range 15–100 keV is variable and presumably depends on the orbital phase. We show that the shape of the pulsar spectrum and its parameters derived from 18–150-keV IBIS data are compatible with the RXTE observations of the source.  相似文献   

16.
Evaluations are presented of the momentum and energy flux divergences of the diurnal and semidiurnal tidal fields calculated by Forbes (1982a, b) from 0 to 400 km altitude. Results are presented in the form of meridional cross-sections from 0 to 78°N or S latitude with a 6° latitude interval. Comparisons are made with evaluations of the momentum flux divergences of the diurnal tide by Miyahara (1981, 1983) and good agreement is obtained in the lower thermosphere (below about 130 km) but a large disparity arises in the upper thermosphere. In the lower thermosphere momentum flux divergences of the semidiurnal tide are comparable with those of the diurnal tide and should be included in general circulation calculations of the 90–120 km region.  相似文献   

17.
We analyze the images of the Sagittarius Arm tangent obtained with the IBIS telescope of the INTEGRAL observatory in the energy range 18–120 keV during its observations in the spring of 2003. We detected 28 sources at a statistically significant level with fluxes above 1.4 mCrab in the energy range 18–60 keV. Of these sources, 16 were previously identified as binaries of various classes in our Galaxy, 3 were identified as extragalactic objects, 2 were identified as pulsars in supernova remnants, and 7 sources were of an unknown nature. These observations revealed three new sources. A statistically significant flux in the energy range 60–120 keV was recorded from 13 sources.  相似文献   

18.
Photoelectron flux in the energy range 6–70 eV coming from the sunlight conjugate ionosphere has been measured directly by the rocket borne low energy electron spectrometer in the altitude region of 210–350 km. Pitch angle distribution of the measured flux is nearly isotropic, the flux decreasing slightly with pitch angle. The photoelectron fluxes measured at 350 km at the energies of 15 and 30 eV are 3 × 106 and 1 × 106 (cm2 s str eV)?1 respectively which decrease to 1 × 106 and 1 × 105 at 250 km at the same energies. These values are consistent with the vertical profile of the 630 nm airglow intensity measured simultaneously. The fluxes obtained near apogee show peaks in the range 20–30 eV which also appear in the daytime photoelectron flux, indicating reduced loss of electrons during the passage from the conjugate ionosphere through the plasmasphere at the low geomagnetic latitude where observation was made. Photoelectron fluxes observed below the apogee height are compared to the calculated fluxes to investigate the interaction of electrons with the atmospheric species during the passage in the ionosphere. Calculated fluxes obtained by using continuous slowing-down approximation and neglecting pitch angle scattering are in good agreement with the observations although there still remain disagreements in detailed comparison which may be ascribed to the assumptions inherent in the calculation and/or to the uncertainties of the input data for the calculation.  相似文献   

19.
The energy spectrum of the diffuse component of cosmic X-rays was measured with rocket-borne scintillation counters. Subtracting the environmental background unambiguously by means of the shutter method, the absolute values of the cosmic X-ray flux are obtained in a few keV band from 10 to 40 keV. The result indicates that the energy spectrum sharply changes its slope around 20–30 keV. Some trial functions for the spectrum are compared with our result; among them a thermal bremsstrahlung spectrum and a two-slope power law spectrum seem to fit very well. The former needs, however, another origin of X-rays in the lower and higher energy regions. ‘Sharpness’ of the break in the case of the latter is discussed, including a data point in high energy side from a balloon experiment. The acceptable range of the spectral index in the high energy side is 2.3–2.6, that of the break energy is 20–30 keV and the corresponding transition width is smaller than 50 keV, if the confidence level is to be better than 5%. Non-thermal X-ray generation due to the inverse Compton effect does not reproduce the X-ray spectrum, even if the electron spectrum shows a sharp break. Bremsstrahlung with the non-thermal electrons or protons with a sharp cut in the low energy side of the spectrum can reproduce our result, though such a cut seems unrealistic. Our result may suggest that current theories on the origin of the diffuse X-rays have to be revised.  相似文献   

20.
Extended time series (time resolution about 2–3 min) of spatially resolved observations (≫ 17 arcsec) in one dimension of solar S-component sources obtained at the Siberian Solar Radio Telescope (SSRT) at 5.2 cm wavelength allow the detection of evolutional features of the growth and decay of active regions in the solar corona. Characteristic slow flux variations with timescales of about 1–2 hours occurring during the decay phase of the radio emission in the low corona above plages and sunspots are compared with recently detected step-like flux increases on timescales of about 10–20 min followed by quasi-constant periods appearing in the initial phase of the development of active regions. Superimposed on this basic behaviour, also fluctuations at shorter timescales (or even periodic oscillations) have been observed. As it is well known from emission-model calculations, the variations of the S-component radiation can be due to variations of the magnetic field and/or changes of the energy of the radiating particles, which is basically the same emission mechanism as for microwave bursts. Since the “S-component” is originally defined by its long timescale behaviour derived from whole-Sun flux density measurements, the presently detected small-timescale features in S-component sources require either a revised definition of S-component emission or must be considered as “burst-like”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号