首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
From the assumption of a universal upper limit for the temperature of about 1012 K which is suggested by the experiences of high energy physics, it follows taking additionally into account the strong interaction between hadrons explicitly that in the earliest stage of the Universe the numbers of nucleon number by a factor of about 107. Accordingly the 3K background radiation, is generated for the most part by annihilation of nearly all primordial heavy particles.  相似文献   

2.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

3.
We consider density fluctuations of a two-fluid model consisting of hydrogen plasma and radiation prior to the cosmic hydrogen recombination. As investigation method that of the dispersion relations is applied, which have been derived from the general-relativistic sound-wave equations taking into account the coupling between plasma and radiation carefully. We obtain growing unstable acoustic modes within the mass range 2 · 106 M < M < 6 · 10 12 M . In a second step the coupled differential equations for the amplitudes of the unstable modes are integrated numerically with respect to time where the integration extends from the initial time prior to the hydrogen recombination up to the present time. We find a significant increase of the amplitudes up to 4 orders of magnitude, if the Universe is described by a cosmological model with a positive cosmological constant (Λ ? 2,2 · 10-56 cm-2) and a positive curvature (Lemaître-Universe) without an essential amount of cold dark matter. We conclude that the existence of galaxies confirm these statements.  相似文献   

4.
The contribution of the electric currents induced as a result of the nonuniformity of the Sun??s rotation to the heating of the lower corona is estimated. The lower corona temperature is estimated taking into account gas-kinetic and turbulent electrical conductivities. It is shown that, when the turbulent conductivity is taken into account, the estimated temperature of the corona layer increases from 2 × 106 K to 5 × 106 K and the distance from the Sun??s center to the zone of maximum heating increases from 7.03 × 108 m to 7.2 × 108 m.  相似文献   

5.
The existence of intergalactic dust has been proved by the following observational facts: the decrease of the numbers of distant galaxies and clusters of galaxies behind the central regions of near clusters of galaxies; the different distributions of RR Lyrae stars and galaxies near ι Microscopii (Hoffmeister's cloud); the dependence of colour excesses of galaxies on supergalactic coordinates as well as on the surface density of bright galaxies; the colour index vs redshift correlation of quasistellar objects. The densities of intergalactic dust are estimated to be between 5×10?30 g cm?3 (near the centers of clusters of galaxies) and 2×10?34 g cm?3 (in general intergalactic space). The grains may be formed either in the early phases of the Universe (25相似文献   

6.
Earlier, under certain simplifying assumptions, on the basis of the General Theory of Relativity, it has been concluded by many authors that when the radius of a gravitationally collapsing spherical object of massM reaches the critical value of the Scharzschild radiusR s=2GM/c 2, then, in a co-moving frame, the object collapses catastrophically to a point. However, in drawing this conclusion due consideration has not been given to the nuclear forces between the nucleons. In particular, the very strong ‘hard-core’ repulsive interaction between the nucleons which has the range ~0.4×10?13 cm has been totally ignored. On taking into account this ‘hard-core’ repulsive interaction, it is found that no spherical object of massM g can collapse to a volume of radius smaller thanR min=(1.68×10?6)M 1/3 cm or to a density larger than ρmax=5.0 × 1016 g cm?3. It has also been pointed out that objects of mass smaller thanM c~1.21×1033 g can not cross the Schwarzschild barrier and gravitationally collapse. The only course left to the objects of mass less thanM cis to reach the equilibrium as either a white dwarf or a neutron star.  相似文献   

7.
We have searched for and estimated the possible gravitational influence of dark matter in the Solar system based on the EPM2011 planetary ephemerides using about 677 thousand positional observations of planets and spacecraft. Most of the observations belong to present-day ranging measurements. Our estimates of the dark matter density and mass at various distances from the Sun are generally overridden by their errors (σ). This suggests that the density of dark matter ρ dm, if present, is very low and is much less than the currently achieved error of these parameters. We have found that ρ dm is less than 1.1 × 10?20 g cm?3 at the orbital distance of Saturn, ρ dm < 1.4 × 10?20 g cm?3 at the orbital distance of Mars, and ρ dm < 1.4 × 10?19 g cm?3 at the orbital distance of the Earth. We also have considered the case of a possible concentration of dark matter to the Solar system center. The dark matter mass in the sphere within Saturn’s orbit should be less than 1.7 × 10?10 M even if its possible concentration is taken into account.  相似文献   

8.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   

9.
Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25–2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s?1, could significantly heat (T >T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z ~ 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.  相似文献   

10.
We report a detailed analysis of an interaction between two coronal mass ejections (CMEs) that were observed on 14?–?15 February 2011 and the corresponding radio enhancement, which was similar to the “CME cannibalism” reported by Gopalswamy et al. (Astrophys. J. 548, L91, 2001). A primary CME, with a mean field-of-view velocity of 669 km?s?1 in the Solar and Heliospheric Observatory (SOHO)/Large Angle Spectrometric Coronagraph (LASCO), was more than as twice as fast as the slow CME preceding it (326 km?s?1), which indicates that the two CMEs interacted. A radio-enhancement signature (in the frequency range 1 MHz?–?400 kHz) due to the CME interaction was analyzed and interpreted using the CME data from LASCO and from the Solar Terrestrial Relations Observatory (STEREO) HI-1, radio data from Wind/Radio and Plasma Wave Experiment (WAVES), and employing known electron-density models and kinematic modeling. The following results are obtained: i) The CME interaction occurred around 05:00?–?10:00 UT in a height range 20?–?25 R. An unusual radio signature is observed during the time of interaction in the Wind/WAVES dynamic radio spectrum. ii) The enhancement duration shows that the interaction segment might be wider than 5 R. iii) The shock height estimated using density models for the radio enhancement region is 10?–?30 R. iv) Using kinematic modeling and assuming a completely inelastic collision, the decrease of kinetic energy based on speeds from LASCO data is determined to be 0.77×1023 J, and 3.67×1023 J if speeds from STEREO data are considered. vi) The acceleration, momentum, and force are found to be a=?168 m?s?2, I=6.1×1018 kg?m?s?1, and F=1.7×1015 N, respectively, using STEREO data.  相似文献   

11.
The mechanisms for the transformation of plasma waves into radiation near the fundamental and second harmonic of the plasma frequency are reviewed and equations are given for both the emission and absorption coefficients for these mechanisms. Near the fundamental the process is the scattering of plasma waves on the polarization clouds of ions and the absorption coefficient can be negative, i.e. the radiation can be amplified. Near the second harmonic the process is the combination of two excited plasma waves for which the absorption coefficient can only be positive. These results are applied to construct models of the radiation source for type III solar radio bursts both at high frequencies where the fundamental is dominant and at low frequencies where the second harmonic is dominant using two model plasma wave spectra, one being one-dimensional, the other isotropic. At high frequencies second harmonic radiation is used to determine the source area for a given energy density in plasma waves W p . The source size and W p are detrmined uniquely for a given plasma wave spectrum by tracing rays in a model source taking into account amplification of the fundamental. The results for a strong source at the 80 MHz plasma level with a ratio of emissivities of the fundamental to second harmonic P(ω p )/P(2ω p ) ≈ 10 are that the source with a one-dimensional plasma wave spectrum is about 14000 km in diameter and W p = 10?6.52 erg cm?3, and the source with an isotropic distribution of plasma waves is about 200 km in diameter and W p = 10?6.3 erg cm?3. It is shown that at low frequencies, where amplification of the fundamental is no longer possible, second harmonic radiation must be dominant and thus very little information about the source can obtained from the radiation.  相似文献   

12.
Attention is given to four reasons for believing that the upper limit on the rotation of the Universe ω set by isotropy of the 3K background may not be appropriate to the local system because of its hierarchical structure. In particular, recent work of Rubinet al. (1973) on the anisotropy of Hubble's parameter (H) as determined by certain galaxies is examined. The anisotropy inH is a 1st order harmonic effect, inconsistent with an origin in an acceleration of the expansion of the Universe (U α;4≠0), but explicable as being due to a large peculiar velocity of the Local Group. This compromises limits set on ω by isotropy of the 3K field, as does the realization that only weak limits can be set if the last-scattering surface (z *) is notz *→∞ but is at smallz * (as expected in a hierarchy). In a rotating Universe, the 3-spaces of constant density cannot be orthogonal on the world lines of matter: a number test of Gödell based on this is generalized and applied (after consideration of Galactic obscuration) to the local Universe, by taking data on clusters of galaxies from the Abell and Zwicky catalogues. Data from the former give only a marginally significant result for the component ω1 of ω in one direction, but a bootstrap argument is applied which takes significance over from Abell's data (considered as a class of galaxies) to Zwicky's data (taken as a class of clusters), giving a statistically significant result on the hypothesis that clusters are the fundamental units of the Universe: it seems likely that ω1r?(const)r-n with 0?n?1 over the interval 500–1000 Mpc (H=60 km s?1 Mpc?1) with a total rotation of ω<2ω1, and ω1 = 1.2 (+0.25) x 10-18 s-1 evaluated on data out to 103 Mpc. Strictly, the quoted value of the rotation only applies to a region of space that in some sense has an isotropic limit: if the actual hierarchy has a large density-dependence away from a local origin (i.e., large thinning factor), then the numerical value of the rotation is smaller than the quoted value but still finite and significant.  相似文献   

13.
Quasars, pulsars and other cosmic sources of intense radiation are known to have large brightness temperature (kT b?mc 2) and relativistic electron density values. In this case the induced Compton scattering by relativistic electrons should be considered. The probability of scattering with decreasing radiation frequency is derived for isotropic radiation scattering. When induced scattering takes place, the relativistic electron obtains its energy by transforming high-frequency quanta into the low-frequency ones. In the most intensive sources electrons would receive energiesE?mc 2 ××(kT b/mc 2)1/7 due to the heating rate proportional toE ?5 with the cooling rate proportional toE 2. Considerable distortion of the quasar spectrum is possible for reasonably large values of relativistic electron density (N?106cm?3) notwithstanding that the heating is negligible. In pulsars relativistic electron heating and spectrum distortion appear to depend more on the induced Compton scattering.  相似文献   

14.
The eclipse observations were performed at the Laboratory of Radio Astronomy of the CrAO in Katsiveli with stationary instrumentation of the Solar Patrol at wavelengths of 10.5 and 12.0 cm. The data obtained were used to determine the brightness temperature of the undisturbed Sun at solar activity minimum between 11-year cycles 23 and 24: T d10.5 = (43.7 ± 0.5) × 103 K at 10.5 cm and T d12.0 = (51.8 ± 0.5) × 103 K at 12.0 cm. The radio brightness distribution above the limb group of sunspots NOAA 0866 was calculated. It shows that at both wavelengths the source consisted of a compact bright nucleus about 50 × 103 km in size with temperatures T b10.5 = 0.94 × 106 K and T b12.0 = 2.15 × 106 K located, respectively, at heights h 10.5 = 33.5 × 103 km and h 12.0 = 43.3 × 103 km above the sunspot and an extended halo with a temperature T b = (230–300) × 103 K stretching to a height of 157 × 103 km above the photosphere. The revealed spatial structure of the local source is consistent with the universally accepted assumption that the radiation from the bright part of the source is generated by electrons in the sunspot magnetic fields at the second-third cyclotron frequency harmonics and that the halo is the bremsstrahlung of thermal electrons in the coronal condensation forming an active region. According to the eclipse results, the electron density near the upper boundary of the condensation was N e ≈ 2.3 × 108 cm?3, while the optical depth was τ ≈ 0.1 at an electron temperature T e ≈ 106 K. Thus, the observations of the March 29, 2006 eclipse have allowed the height of the coronal condensation at solar activity minimum to be experimentally determined and the physical parameters of the plasma near its upper boundary to be estimated.  相似文献   

15.
The propagation of an instantaneous burst of isotropic radiation from the time of its onset at some redshift z 0 to the time of its detection at the present epoch (at z = 0) is considered within the framework of a flat Universe. The Thomson scattering by free electrons and the scattering in the primordial hydrogen Lα and Lβ lines and in the He I 1s2–1s2p, 1s3p (1S–1P*) lines are taken into account. It is shown that the relative amplitude of the spectral distortions due to the scattering in these lines at the corresponding frequencies can be a factor of 103?104 greater than the maximum possible amplitude from the scattering in the subordinate hydrogen lines considered previously (Dubrovich and Grachev 2015). In the linear approximation in optical depth, the distortion profiles in the resonance lines turn out to be purely absorption ones and depend neither on the direction nor on the distance to the burst center, in contrast to the profiles in the subordinate lines. The profiles contain jumps at frequencies corresponding to the instant the source (burst) appears at a given redshift z 0. For example, at z 0 = 5000 the jumps in the hydrogen Lα and Lβ lines lie at frequencies of 493 and 584 GHz, respectively, while in the above two helium lines they lie at frequencies of 855 and 930 GHz at z 0 = 6000. The relative magnitude of the jumps ranges from 10?4 to 3 × 10?3.  相似文献   

16.
The giant post-flare arch of 6 November 1980 revived 11 hr and 25 hr after its formation. Both these revivals were caused by two-ribbon flares with growing systems of loops. The first two brightenings of the arch were homologous events with brightness maxima moving upwards through the corona with rather constant speed; during all three brightenings the arch showed a velocity pattern with two components: a slow one (8–12 km?1), related to the moving maxima of brightness, and a fast one (~ 35 km s?1), the source of which is unknown. During the first revival, at an altitude of 100000 km, temperature in the arch peaked ~ 1 hr, brightness ~ 2 hr, and emission measure ~ 3.5 hr after the onset of the brightening. Thus the arch looks like a magnified flare, with the scales both in size and time increased by an order of magnitude. At ~ 100000 km altitude the maximum temperature was ?14 × 106K, max.n e? 2.5 × 109cm?3, and max. energy density ? 11.2 erg cm?3. The volume of the whole arch can be estimated to 1.1 × 1030 cm3, total energy ?1.2 × 1031 erg, and total mass ?4.4 × 1015g. The density decreased with the increasing altitude and remained below 7 × 109 cm?3 anywhere in the arch. The arch cooled very slowly through radiation whereas conductive cooling was inhibited. Since its onset the revived arch was subject to energy input within the whole extent of the preexisting arch while a thermal disturbance (a new arch?) propagated slowly from below. We suggest that the first heating of the revived arch was due to reconnection of some of the distended flare loops with the magnetic field of the old preexisting arch. The formation of the ‘post’-flare loop system was delayed and started only some 30–40 min later. Since that time a new arch began to be formed above the loops and the velocities we found reflect this formation.  相似文献   

17.
The various measurements of the linear matter density perturbation amplitude obtained from the observations of the cosmic microwave background (CMB) anisotropy, weak gravitational lensing, galaxy cluster mass function, matter power spectrum, and redshift space distortions are compared. The Planck data on the CMB temperature anisotropy spectrum at high multipoles, ? > 1000 (where the effect of gravitational lensing is most significant), are shown to give a measurement of the matter density perturbation amplitude that contradicts all other measurements of this quantity from both Planck CMB anisotropy data and other data at a significance level of about 3.7σ. Thus, at present these data should not be combined together for the calculations of constraints on cosmological parameters. Except for the Planck data on the CMB temperature anisotropy spectrum at high multipoles, all the remaining measurements of the density perturbation amplitude agree well between themselves and give the following constraints: σ8 = 0.792± 0.006 on the linear matter density perturbation amplitude, Ωm = 0.287± 0.007 on the matter density parameter, and H0 = 69.4 ± 0.6 km s?1 Mpc?1 on the Hubble constant. Various constraints on the sum of neutrino masses and the number of neutrino flavors can be obtained by additionally taking into account the data on baryon acoustic oscillations and (or) direct Hubble constant measurements in the local Universe.  相似文献   

18.
Models of the protosatellite accretion disk of Saturn are developed that satisfy cosmochemical constraints on the volatile abundances in the atmospheres of Saturn and Titan with due regard for the data obtained with the Cassini orbiter and the Huygens probe, which landed on Titan in January 2005. All basic sources of heating of the disk and protosatellite bodies are taken into account in the models, namely, dissipation of turbulence in the disk, accretion of gaseous and solid material onto the disk from the feeding zone of Saturn in the solar nebula, and heating by the radiation of young Saturn and thermal radiation of the surrounding region of the solar nebula. Two-dimensional (axisymmetric) temperature, pressure, and density distributions are calculated for the protosatellite disk. The distributions satisfy the cosmochemical constraints on the disk temperature, according to which the temperature at the stage of the satellite formation ranged from 60–65 K to 90–100 K at pressures from 10?7 to ?10?4 bar in the zone of Titan’s formation (according to estimates, r = 20–35R Sat). Variations of the basic input parameters (the accretion rate onto the protosatellite disk of Saturn from the feeding zone of the planet ?; the parameter α characterizing turbulent viscosity of the disk; and the mass concentration ratio in the solid/gas system) satisfying the aforementioned temperature constraint are found. The spectrum of models satisfying the cosmochemical constraints covers a considerable range of consistent parameters. A model with a rather small flux of ? = 10?8 M Sat/ yr and a tenfold depletion of Saturn’s disk in gas due to gas scattering from the solar nebula is at one side of this range. A model with a much higher flux of ? = 10?6 M Sat/yr and a hundredfold decrease in opacity of the disk matter owing to decreased concentration of dust particles and/or their agglomeration into large aggregates and sweeping up by planetesimals is at the other side of the range.  相似文献   

19.
Astronomical observations and cosmochemical calculations suggest that the planet Mercury may be composed of materials which condensed at relatively high temperatures in the primitive solar nebula and may have a basaltic crust similar to parts of the moon. These findings, plus the long standing inference that Mercury is much richer in metallic iron than the other terrestrial planets, provide important constraints which we apply to models of the thermal evolution and density structure of the planet. The thermal history calculations include explicitly the differing thermal properties of iron and silicates and account for core segregation, melting and differentiation of heat sources, and simulated convection during melting. If the U and Th abundances of Mercury are taken from the cosmochemical model of Lewis, then the planet would have fully differentiated a metal core from the silicate mantle for all likely initial temperature distributions and heat transfer properties. Density distributions for the planet are calculated from the mean density and estimates of the present-day temperature. For the fully differentiated model, the moment of inertia C/MR2 is 0.325 (J2=0.302×10?6). For models with lower heat source abundances, the planet may not yet have differentiated. The density profiles for such models give C/MR2=0.394 (J2=0.487×10?6). These results should be useful for preliminary interpretation of the Mariner 10 measurements of Mercury's gravitational field.  相似文献   

20.
Results of the scattered solar radiation spectrum measurements made deep in the Venus atmosphere by the Venera 11 and 12 descent probes are presented. The instrument had two channels: spectrometric (to measure downward radiation in the range 0.45 < γ < 1.17 μm) and photometric (four filters and circular angle scanning in an almost vertical plane). Spectra and angular scans were made in the height range from 63 km above the planet surface. The integral flux of solar radiation is 90 ± 12 W m?2 measured on the surface at the subsolar point. The mean value of surface absorbed radiation flux per planetary unit area is 17.5 ± 2.3 W m?2. For Venera 11 and 12 landing sites the atmospheric absorbed radiation flux is ~15 W m?2 for H >; 43 km and ~45 W m?2 for H < 48 km in the range 0.45 to 1.55 μm. At the landing sites of the two probes the investigated portion of the cloud layer has almost the same structure: it consists of three parts with boundaries between them at about 51 and 57 km. The base of clouds is near 48 km above the surface. The optical depth of the cloud layer (below 63 km) in the range 0.5 to 1 μm does not depend on the wavelength and is ~29 and ~38 for the Venera 11 and 12 landing sites, respectively. The single-scattering albedo, ω0, in the clouds is very close to 1 outside the absorption bands. Below 58 km the parameter (1 ? ω0) is <10?3 for 0.49 and 0.7 μm. The parameter (1 ? ω0) obviously increases above 60 km. Below 48 km some aerosol is present. The optical depth here is a strong function of wavelength. It varies from 1.5 to 3 at λ = 0.49 μm and from 0.13 to 0.4 at 1.0 μm. The mean size of particles below the cloud deck is about 0.1 μm. Below 35 km true absorption was found at λ < 0.55 μm with the (1 ? ω0) maximum at H ≈ 15 km. The wavelength and height dependence of the absorption coefficient are compatible with the assumption that sulfur with a mixing ratio ~2 × 10?8 normalized to S2 molecules is the absorber. The upper limits of the mixing ratio for Cl2, Br2, and NO2 are 4 × 10?8, 2 × 10?11, and 4 × 10?10, respectively. The CO2 and H2O bands are confidently identified in the observed spectra. The mean value of the H2O mixing ratio is 3 × 10?5 < FH2O < 10?4 in the undercloud atmosphere. The H2O mixing ratio evidently varies with height. The most probable profile is characterized by a gradual increase from FH2O = 2 × 10?5 near the surface to a 10 to 20 times higher value in the clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号