首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady state level density of 20 levels of boron-like ions, Mg viii and Si x, have been computed as a function of electron density and temperature. We have accounted for collisional and spontaneous radiative processes. Photo-excitation between the two levels of the ground term has also been considered. Using the computed level density, line intensities have been obtained as a function of electron density and temperature. In case of Mg viii, line intensity ratio I(430.47)/I(436.62) is found to be electron density sensitive. Likewise other pairs of lines namely, I(75.03)/I(74.86), I(315.02)/I(430.47), and I(315.02)/I(335.23) are also found to be density sensitive. Similar density sensitive line intensity ratios have been found for Si x. Absolute line fluxes from these ions at earth distance have been computed and are found to be comparable with values obtained, using various satellite and rocket measurements.Paper presented at the 5th Astronomical Society of India Meeting, held at Uttar Pradesh State Observatory, Naini Tal, India, 5–9 November, 1979.  相似文献   

2.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

3.
We report on a new investigation of microbursts at meter-decameter wavelengths observed using the Broad Band Array at Gauribidanur Radio Observatory. This is an independent set of observations of microbursts: previous observations had been obtained only by the Clark Lake multifrequency radioheliograph. We confirm several properties of microbursts reported earlier. In addition, we have studied some new properties of microbursts such as time profile characteristics, flux density and energy spectra for comparison with the corresponding properties of normal type III bursts. The present study supports the idea that the microbursts and the normal type III bursts are generated by electron beams of similar characteristics. We interpret the low brightness temperature of microbursts as follows: plasma waves generated by the electron beams through beam-plasma instability are quickly isotropized as they scatter on the density fluctuations in the corona. The resulting low levels of plasma waves are converted into transverse radiation of low brightness temperature. One important consequence of the isotropization is that the second harmonic plasma emission dominates the fundamental and hence the microbursts are expected to be predominantly a harmonic plasma emission.  相似文献   

4.
I re-examine the brightness temperature problem in PKS 0405-385, which is an extreme intra-day variable radio quasar with an inferred brightness temperature of  ∼5 × 1014 K  at 5 GHz, well above the Compton catastrophe limit of  ∼1011 K  that is reached when the synchrotron photon energy density exceeds the energy density of the magnetic field. If one takes into account the uncertainty in the distance to the ionized clouds responsible for interstellar scintillation causing rapid intra-day variability in PKS 0405-385, it is possible that the brightness temperature could be as low as  ∼1013 K  at 5 GHz, or even lower. The radio spectrum can be fitted by optically thin emission from mono-energetic electrons, or an electron spectrum with a low-energy cut-off such that the critical frequency of the lowest energy electrons is above the radio frequencies of interest. If one observes optically thin emission along a long narrow emission region, the average energy density in the emission region can be many orders of magnitude lower than calculated from the observed intensity if one assumed a spherical emission region. I discuss the physical conditions in the emission region and find that the Compton catastrophe can then be avoided using a reasonable Doppler factor. I also show that MeV to 100-GeV gamma-ray emission at observable flux levels should be expected from extreme intra-day variable sources such as PKS 0405-385.  相似文献   

5.
We discuss spatial variations in electron density at the base of the corona and in the temperature gradient in the chromospheric-coronal transition layer as determined from analysis of maps constructed from Mgx and OVI spectroheliograms. Both the mapping techniques and results of analyzing EUV spectra from OSO 6 observations are presented. Comparisons of these maps with photospheric magnetograms and spectroheliograms made in chromospheric EUV lines and continua indicate that the electron density and temperature gradient in the transition layer tend to be enhanced in areas where the photospheric magnetic field and chromospheric EUV emission are enhanced. Relationships among the coronal electron density, transition-layer temperature gradient, chromospheric emission, and photospheric magnetic field strength are derived.  相似文献   

6.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

7.
The radio emission from Jupiter at 10, 21 cm wavelength has been measured with a spatial resolution of the order of 1 Jupiter radius. This may be analytically reduced to the emission per cubic centimeter of source at each measured frequency. The theoretically predicted synchrotron emission of electrons as a function of frequency, magnetic field and electron energy can then be compared to the observed source emissivity to obtain the number density and ‘temperature’ of the electrons. Present observations taken at different epochs are not sufficiently reliable to infer peak energies within an order of magnitude. Nevertheless the present results indicate that electrons diffuse in rapidly (in a time of the order of months) conserving the first adiabatic invariant and reach a peak energy at about 2 Jupiter radii. The electron energy decreases rapidly nearer the planet because of energy lost to radiation in the large magnetic field close to the planet.  相似文献   

8.
The recent survey of H 272α recombination line (324.99 MHz) in the direction of 34 Hn regions, 12 SNRs and 6 regions of continuum minimum (‘blank’ regions) in the galactic plane is used to derive the properties of diffuse ionized gas in the inner Galaxy. The intensity of radio recombination lines at high frequencies is dominated by spontaneous emission in high-density gas and that at low frequencies (325 MHz) by stimulated emission in low-density gas. We have used this property to obtain the electron density in the gas in the direction of blank regions and SNRs, by combining the H 272 α measurements (preceeding paper) with the published data at higher frequencies. Further, we have imposed constraints on the electron temperature and pathlength through this gas using the observed high-frequency continuum emission, average interstellar electron density and geometry of the line-emitting regions. The derived properties of the gas are (i) electron density 0.5–6 cm-3, (ii) electron temperature 3000–8000 K and (iii) emission measures 500–3000 pc cm-6 The corresponding pathlengths are 50–200 pc. As the derived sizes of the low-density regions are small compared to the pathlength through the Galaxy, the low-frequency recombination lines cannot be considered as coming from a widely distributed component of the interstellar medium. The Hn regions studied in the above survey cannot themselves produce the H 272α lines detected towards them because of pressure broadening, optical depth, and beam dilution. However, the agreement in velocity of these lines with those seen at higher frequencies suggests that the low-frequency recombination lines arise in low-density envelopes of the Hn regions. Assuming that the temperature of the envelopes are similar to those of the cores and invoking geometrical considerations we find that these envelopes should have electron densities in the range 1–10 cm-3 and linear sizes of 30–300 pc in order to produce the observed H 272α lines.  相似文献   

9.
The thermal response of the Earth's ionospheric plasma is calculated for various suddenly applied electron and ion heat sources. The time-dependent coupled electron and ion energy equations are solved by a semi-automatic computational scheme that employs Newton's method for coupled vector systems of non-linear parabolic (second order) partial differential equations in one spatial dimension. First, the electron and composite ion energy equations along a geomagnetic field line are solved with respect to a variety of ionospheric heat sources that include: thermal conduction in the daytime ionosphere; heating by electric fields acting perpendicular to the geomagnetic field line; and heating within a stable auroral red are (SAR-arc). The energy equations are then extended to resolve differential temperature profiles, first for two separate ion species (H+, O+) and then for four separate ion species (H+, He+, N+, O+) in addition to the electron temperature. The electron and individual ion temperatures are calculated for conditions within a night-time SAR-arc excited by heat flowing from the magnetosphere into the ionosphere, and also for typical midlatitude daytime ionospheric conditions. It is shown that in the lower ionosphere all ion species have the same temperature; however, in the topside ionosphere above about 400 km, ion species can display differential temperatures depending upon the balance between thermal conduction, heating by collision with electrons, cooling by collisions with the neutrals, and energy transfer by inter-ion collisions. Both the time evolution and steady-state distribution of such ion temperature differentials are discussed.The results show that below 300km both the electrons and ions respond rapidly (<30s) to variations in direct thermal forcing. Above 600 km the electrons and ions display quite different times to reach steady state, depending on the electron density: when the electron density is low the electrons reach steady state temperatures in 30 s, but typically require 700 s when the density is high; the ions, on the other hand, reach steady state in 700 s when the density is high, and 1500–2500 s when the density is low. Between 300 and 600 km, a variety of thermal structures can exist, depending upon the electron density and the type of thermal forcing; however steady state is generally reached in 200–1000 s.  相似文献   

10.
Line intensity ratios of EUV emission lines from Navii and Alix have been considered for electron density and temperature determinations within the chromosphere-corona transition region and the corona. The electron pressure within the emission region has been assumed to be a constant parameter. Theoretical line intensities for these ions have been computed using a model solar atmosphere and compared with the values as observed by ATM ultraviolet spectrometer. The observed intensities correspond to the average quiet-Sun conditions near solar minimum.  相似文献   

11.
Soft X-ray flare data in the wavelength range 2.6–10 Å are used to examine the time variation of emission measure and electron temperature. The thermal plasma parameters were derived according to a two-temperature model proposed by Herring and Craig (1973). Estimates of electron density and source volume are made by assuming conductive and radiative cooling mechanisms. It is suggested that the present observations imply a multi-thermal interpretation of the soft X-ray flare.  相似文献   

12.
During the evening of 9 April and the morning of 10 April 1969, the twilight zenith intensity of the atomic oxygen red line OI(3P-1D) at 6300 Å was measured at the Blue Hill Observatory (42°N, 17°W). At the same time incoherent scatter radar data were being obtained at the Millstone Hill radar site 50 km distant. We have used a diurnal model of the mid-latitude F-region to calculate the ionospheric structure over Millstone Hill conditions similar to 9–10 April 1969. The measured electron temperature, ion temperature, and electron density at 800 km are used as boundary conditions for the model calculations. The diurnal variation of neutral composition and temperature were obtained from the OGO-6 empirical model and the neutral winds were derived from a semiempirical three-dimensional dynamic model of the neutral thermosphere. The solar EUV flux was adjusted to yield reasonable agreement between the calculated and observed ionospheric properties.This paper presents the results of these model computations and calculations of the red line intensity. The 6300 Å emission includes contributions from photoelectron excitation, dissociative recombination, Schumann-Runge photodissociation and thermal electron impact. The variations of these four components for morning and evening twilight between 90–120° solar zenith angles, and their relative contributions to the total 6300 Å emission line intensity, are presented and the total is compared to the observations. For this particular day the Schumann-Runge photodissociation component, calculated using the solar fluxes tabulated by Ackermann (1970), is the dominant component of the morning twilight 6300 Å emission. During evening twilight it is necessary to utilize a lower O2 density than for the morning twilight in order to bring the calculated and observed 6300 Å emission rates into agreement. The implication that there may be a diurnal variation in the O2 density at the base of the thermosphere is discussed in the light of available experimental data and current theoretical ideas.  相似文献   

13.
R. Fisher  T. Pope 《Solar physics》1971,20(2):389-399
Nine coronal emission lines representing five stages of Fe ionization and one stage of Ni were observed in an enhanced coronal region. The data from these observations are presented along with a density model of the enhanced region obtained from the FeXIII and NiXV emission line ratios as a function of position angle. The electron densities obtained from FeXIII lines range from N e = 108 to 109 cm–3, and are slightly lower for NiXV line data. Estimates of the variation of temperature over the enhanced region are inferred from the observed line intensities.  相似文献   

14.
Assuming steady state conditions, the occupation of 9 levels of oxygen-like ions: Ne iii, Mg v, Si vii, S ix, and Ar xi have been computed as a function of electron density and temperature. The following physical processes have been considered: collisional excitations and spontaneous radiative de-excitations for permitted and intercombination transitions; collisional excitations and de-excitations, photo-excitations and spontaneous radiative transitions among the five levels of the ground term. This study indicates that line intensity ratios for oxygen-like ions can be used as a diagnostic in the determination of these two parameters of the solar plasma.Paper presented at the 4th Astronomical Society of India Meeting, held at Radio Astronomy Centre, Ootacamund, India, 7–10 March 1978.  相似文献   

15.
The results of a spectroscopic investigation of five planetary nebulae are given. The relative intensities of emission lines observed in them were determined. The electron density and electron temperature of the central region of the nebula KjPn 8 were determined. It was shown that the gas in this region is very highly excited. Translated from Astrofizika, Vol. 41, No. 3, pp. 367–375, July–September, 1998.  相似文献   

16.
Ratios of emission line intensities are used to calculate the variation of temperature and the variation of electron density as a function of ion class for differing paths through a coronal enhancement. The data indicate (a) a peak mean electron density of 2.3 × 109 cm–3, (b) a temperature maximum greater than 2.3 × 106 K, and (c) the non-coincidence of the peak temperature and peak mean electron density. The latter demonstrates the invalidity of the assumption of symmetric models for coronal enhancements.The abundance of Ni was found to be equal to 0.045 that of Fe from the line ratio I( 6702)/ /I( 7059) and a density model based on the variation of the ratio I( 8024)/I( 6702).  相似文献   

17.
The observational evidences on the variability of relative intensities of emission lines of the Seyfert galaxy NGC 1275 are discussed. The time scale of these variations is about half a year. It equals to the time scale of continuous and radio variations of the nucleus of that galaxy. The changes of the electron temperature Te and the electron density ne calculated from the emission line intensities were found to have a functional connection. This evidences that the physical conditions in the gaseous zone of the nucleus of NGC 1275 are recurrent.  相似文献   

18.
The rates for a variety of beta decay processes have been determined as a function of temperature for nuclei which can participate in thes-process production of heavy elements, occurring in the presence of the22Ne(α,n)25 Mg neutron source operating in the convective helium shells of thermally pulsing stars. Specifically: calculated half-lives are presented for electron emission, positron emission, and electron capture over the temperature range 108–109 K.  相似文献   

19.
Temperature and emission measure from goes soft X-ray measurements   总被引:1,自引:0,他引:1  
  相似文献   

20.
The population densities of all levels with principal quantum numbern=2 in a number of helium-like ions with nuclear charge numberZ, in the range 6 to 28 have been evaluated as a function of various parameters, i.e., electron temperature,T e, electron density,N e, radiation temperature,T r, dilution factor,W, and of the state of ionization. The spectral line fluxes from all possible radiative transitions from these levels have been calculated for an optically thin plasma. The effects of cascades following collisional excitation of higher levels or radiative and dielectronic recombination have been computed in detail. Innershell ionization of the lithium-like ion to form the helium-like ion in a 23 S or 21 S state has been considered. It can have a strong influence on the forbidden line intensity in a non-equilibrium plasma. Collisional and radiative coupling of levels of the same multiplicity (e.g. 23 S 1 and 23 P 2,1,0) have been considered as a function ofT e, Ne orT r, W, respectively. The computations were performed both for stationary and time-varying plasmas. In the latter case strong departures from a stationary ionization equilibrium can significantly alter the line fluxes. A few examples of the results are shown and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号