首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duvall  T.L.  Gizon  L. 《Solar physics》2000,192(1-2):177-191
Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of Doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence have been measured.  相似文献   

2.
The nonlinear pseudo-radial mode of oscillation of a rotating magnetic star is studied. It is shown that for a general rotational field, the coupling between magnetic field and rotation tends to reduce the average rotational energy parameterT. This result in a lowering of the maximum pulsation amplitudeq max, which depends on strength of rotation and magnetic field. The configuration tends, therefore, to a new equilibrium state at lower value ofq max. The analytic solution of the pulsation equation for the case ofy=5/3 in the presence of rotation and magnetic field has also been derived in the Appendix.  相似文献   

3.
It is essential for the understanding of stellar structure models of high mass stars to explain why constant stars, nonpulsating chemically peculiar hot Bp stars and pulsating stars co‐exist in the slowly pulsating B stars and β Cephei instability strips. We have conducted a search for magnetic fields in the four Bp stars HD55522, HD105382, HD131120, and HD138769 which previously have been wrongly identified as slowly pulsating B stars. A recent study of these stars using the Doppler Imaging technique revealed that the elements He and Si are inhomogeneously distributed on the stellar surface, causing the periodic variability. Using FORS 1 in spectropolarimetric mode at the VLT, we have acquired circular polarisation spectra to test the presence of a magnetic field in these stars. A variable magnetic field is clearly detected in HD55522 and HD105382, but no evidence for the existence of a magnetic field was found in HD131120. The presence of a magnetic field in HD138769 is suggested by one measurement at 3σ level. We discuss the occurrence of magnetic B stars among the confirmed pulsating B stars and find strong magnetic fields of order kG and oscillations to be mutually exclusive. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This is the first paper to consider the effects of both magnetic field and self-gravity on the pulsational instability. Our main new results are that the self-gravity enhances the instability of the magneto-acoustic mode in the outer disk strongly, and also affects the instability in the inner disk, but stabilized the viscous mode. The effect of self-gravity is much greater than that of magnetic field in the outer disk, while the effect of magnetic field on the instability is weaker than that in the previous work's (Wuet al., 1995; Yanget al., 1995), in which the self-gravity has not been considered. Finally, we discuss our results.  相似文献   

5.
Analysis of Venera 9 and 10 data suggest a comingled excitation of the ionosphere of Venus by the time dependent component of the interplanetary magnetic field, upon which may be super-imposed a contribution from the interplanetary electric field. The inductive contributions correspond respectively to generation of eddy currents and to unipolar induction, i.e., the TE and TM modes of classical electromagnetism. The former is suggested when the interplanetary magnetic field exhibits significant changes in intensity or orientation, but could also have contributions from fluctuations in plasma pressure expressed through the frozen-in field. Since the TM mode depends upon E=v c ×B, the TM mode can also have an unsteady component. The magnetic field measured near Venus by Venera 9 and 10 is considered within this framework and with respect to laboratory simulation using both conducting and insulated (but internally conducting) spheres.  相似文献   

6.
Two distinct regions of shock-associated magnetic clouds, (i) magnetically turbulent regions formed due to interaction between magnetic cloud and ambient magnetic field i.e. turbulent interaction region (TIR), and magnetically quiet region called magnetic cloud have been considered separately and correlation of interplanetary plasma and field parameters, magnetic field strength (B) and solar wind speed (V), with cosmic ray intensity (I) have been studied during the passage of these two regions. A good correlation between B and I and between V and I has been obtained during the passage of sheath when the magnetic field is high and turbulent, while these correlation have been found to be poor during the passage of magnetic clouds when the field is strong and smooth. Further, there is a positive correlation between enhancement in field strength and its variance in the sheath region. These results strongly support the hypothesis that most Forbush decreases are due to scattering of particles by region of enhanced magnetic turbulence. These results also suggest that it will provide a better insight if not the magnetic field enhancement alone but in addition, the nature of magnetic field enhancement is also considered while correlating the field enhancements with depressions in cosmic rays. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

8.
A complete dispersion relation for a whistler mode wave propagation in an anisotropic warm ion-electron magnetoplasma in the presence of parallel electric field using the dispersion relation for a circularly polarized wave has been derived. The dispersion relation includes the effect of anisotropy for the ion and electron velocity distribution functions. The growth rate of electron-ion cyclotron waves for different plasma parameters observed atL = 6.6R E has been computed and the results have been discussed in detail in the light of the observed features of VLF emissions and whistlers. The role of the combination of ion-cyclotron and whistler mode electromagnetic wave propagation along the magnetic field in an anisotropic Maxwellian weakly-ionized magnetoplasma has been studied.  相似文献   

9.
Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field B of a star can be used as a statistically significant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength B and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, F(B), that has a power-law dependence on B with an exponent of ≈−1.82. We have found a sharp decrease in the function F(B) for B ⩽ 400 G that may be related to rapid dissipation of weak stellar surface magnetic fields.  相似文献   

10.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Cally  P.S. 《Solar physics》2000,192(1-2):395-401
Sunspots absorb and scatter incident p modes. The dominant mechanism is still uncertain. One possibility, mode conversion to slow magneto-acoustic waves, has been shown to yield results in agreement with observations for the f mode only. Absorption of p modes in simple vertical magnetic field models is too weak by an order of magnitude or more. Here we report on numerical calculations of p modes encountering a simple sunspot model with field which spreads with height. It is found that p-mode absorption is greatly enhanced by field spread, to a level consistent with observations, and it appears that it occurs preferentially in the outer regions of the spot, in line with recent results from acoustic holography.  相似文献   

12.
It is shown that the lack of linear polarization in the microwave radiation of solar bursts (reported in a earlier paper) may be explained by spatial dispersion of Faraday rotation. The maximum source diameter s without noticeable destruction of linear polarization is determined by the electron density and the magnetic field strength in the volume, where the linear polarization is generated. In the case where linear polarization is produced by the radiation source, s is smaller than only 20 km. In the other case where linear polarization is produced by mode coupling in a quasi-transverse magnetic field in the corona, the s-values are found to range from 10 to 6000 km, which is still much smaller than the generally adopted sizes of microwave burst sources. The second case has been investigated for several models of magnetic fields.  相似文献   

13.
The applications of the spectral analysis methods discovered by Kirchhoff for the investigation of stellar magnetic fields are considered. The statistical properties of the mean magnetic fields for OBA stars have been investigated by analyzing data from two catalogs of magnetic fields. It is shown that the mean effective magnetic field ℬ of a star can be used as a statistically significant characteristic of its magnetic field. The magnetic field distribution functions F(ℬ) have been constructed for B-type and chemically peculiar (CP) stars, which exhibit a power-law dependence on ℬ. A sharp decrease in F(ℬ) in the range of weak magnetic fields has been found. The statistical properties of the magnetic fluxes for main-sequence stars, white dwarfs, and neutron stars are analyzed.  相似文献   

14.
Sunspots absorb and scatter incident f- and p-modes. Until recently, the responsible absorption mechanism was uncertain. The most promising explanation appears to be mode conversion to slow magnetoacoustic-gravity waves, which carry energy down the magnetic field lines into the interior. In vertical magnetic field, mode conversion can adequately explain the observed f-mode absorption, but is too inefficient to account for the absorption of p-modes. In the first paper of the present series we calculated the efficiency of fast-to-slow magnetoacoustic-gravity wave conversion in uniform non-vertical magnetic fields. We assumed two-dimensional propagation, where the Alfvén waves decouple. In comparison to vertical field, it was found that mode conversion is significantly enhanced in moderately inclined fields, especially at higher frequencies. Using those results, Cally, Crouch, and Braun showed that the resultant p-mode absorption produced by simple sunspot models with non-vertical magnetic fields is ample to explain the observations. In this paper, we further examine mode conversion in non-vertical magnetic fields. In particular, we consider three-dimensional propagation, where the fast and slow magnetoacoustic-gravity waves and the Alfvén waves are coupled. Broadly speaking, the p-mode damping rates are not substantially different to the two-dimensional case. However, we do find that the Alfvén waves can remove similar quantities of energy to the slow MAG waves.  相似文献   

15.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The instability of a stratified layer of a self-gravitating plasma has been studied to include jointly the effects of viscosity, Coriolis forces and the finite Larmor radius (FLR). For a plasma permeated by a uniform horizontal magnetic field, the stability analysis has been carried out for a transverse mode of wave propagation. The solution has been obtained through variational methods for the case when the direction of axis of rotation is along the magnetic field. The analysis for the case when the direction of rotation is transverse to the magnetic field has also been considered and the solutions for this case have been obtained through integral approach. The dispersion relations have been derived in both the cases and solved numerically. It is found that both the viscous and FLR effects have a stabilizing influence on the growth rate of the unstable mode of disturbance. Coriolis forces are found to have stabilizing influence for small wave numbers and destabilizing for large wave numbers.  相似文献   

17.
The instability of a supercritical Taylor‐Couette flow of a conducting fluid with resting outer cylinder under the influence of a uniform axial electric current is investigated for magnetic Prandtl number Pm = 1. In the linear theory the critical Reynolds number for axisymmetric perturbations is not influenced by the current‐induced axisymmetric magnetic field but all axisymmetric magnetic perturbations decay. The nonaxisymmetric perturbations with m = 1 are excited even without rotation for large enough Hartmann numbers (“Tayler instability”). For slow rotation their growth rates scale with the Alfvén frequency of the magnetic field but for fast rotation they scale with the rotation rate of the inner cylinder. In the nonlinear regime the ratio of the energy of the magnetic m = 1 modes and the toroidal background field is very low for the non‐rotating Tayler instability but it strongly grows if differential rotation is present. For super‐Alfv´enic rotation the energies in the m = 1 modes of flow and field do not depend on the molecular viscosity, they are almost in equipartition and contain only 1.5 % of the centrifugal energy of the inner cylinder. The geometry of the excited magnetic field pattern is strictly nonaxisymmetric for slow rotation but it is of the mixed‐mode type for fast rotation – contrary to the situation which has been observed at the surface of Ap stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The magnetohydrodynamic frequency-wavelength relation, derived by McLellan and Winterberg (1968), has been evaluated for an isothermal atmosphere. In particular, the effect which an inclined magnetic field and a finite horizontal wavelength have on the critical sonic and internal-gravity cut-off frequencies has been examined, in which it has been assumed that the magnetic field vector, wave vector, and gravity vector are coplanar. It is shown that the frequency band in which vertical wave propagation is impossible in the non-magnetic photosphere, becomes smaller when an inclined uniform magnetic field is introduced, and that low frequency magnetically coupled internal-gravity waves do not propagate vertically if the horizontal wavelengths associated with this mode are greater than a critical wavelength which decreases with field strength.It is also demonstrated that an inclined magnetic field will inhibit the resonance that occurs at the critical frequency g in the non-magnetic atmosphere which is a result consistent with recent observations of the wiggly line structure in active regions.This work is supported by the European Space Research Organization.Presently with the Solar Astronomy Group, California Institute of Technology.  相似文献   

19.
The inversion routine proposed by Aueret al. (1977), for the determination of vector magnetic fields from Stokes profiles, has been generalized to include magneto-optical and damping effects. Synthetic profiles have then been generated from a sunspot model atmosphere accounting for the depth variation of the relevant physical parameters such as the magnetic field amplitude, inclination angle, etc...., each variation being considered one at a time. Alfvén waves and magnetic inhomogeneities over the field of view have also been considered. These synthetic profiles have been presented to the inversion routine. The results of the fits show that the magnetic field amplitude and direction are always recovered with good accuracy when these quantities are constant in the model atmosphere, and, in those cases where te magnetic field vector is supposed to vary monotonically with optical depth, the values recovered are always intermediate between the values corresponding to the top and bottom of the atmosphere. Moreover, we found that the differences between synthetic and best-fit profiles are able to characterize, in many cases, the particular physical situation considered.  相似文献   

20.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号