首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
潮间带周期性淹水区域水深、流速的变化过程是潮滩水动力过程的基本组成部分,也是潮流与泥沙相互作用的基础。通过2002年4月至2003年1月4个季节的野外实测,获得了平静天气条件下,崇明东滩滩面潮流水深、流速与流向的变化过程数据。结果表明,崇明东滩盐沼和邻近光滩处涨潮历时均小于落潮历时,水深过程变化呈现出“陡涨缓落”的特点。光滩与盐沼交界处光滩一侧流速过程呈“双峰型”特征,涨落潮均出现流速峰值;盐沼(植物生长期)流速过程具有“单峰型”特点,仅在涨潮初出现峰值。研究区潮流不对称性明显,主要表现为涨潮优势,且由光滩向盐沼上部不断增强,潮沼植物和地形变化是加强盐沼区涨潮优势的主要原因。流速变化过程的差异和潮流不对称性使盐沼区域发生稳定的泥沙淤积,盐沼前缘光滩则会出现较频繁的冲淤变化,平静天气条件下,它们是控制崇明东滩泥沙输移和潮滩动力地貌过程的动力基础。  相似文献   

2.
辛沛  金光球  李凌 《水科学进展》2009,20(3):379-384
滨海盐沼是重要的陆地-海洋交界带生态系统。目前国际上存在关于盐沼的两大假设:盐沼系统输出养分和盐沼植物带状分布。为验证这两大假设,增强对盐沼湿地的了解,盐沼孔隙水流动及溶质运移研究至关重要。为模拟复杂盐沼系统孔隙水流动及溶质运移,改进了美国地质勘测局编制的SUTRA程序。基于假定的潮沟横断面物理条件,对孔隙水流动及溶质运移过程进行了模拟分析。结果表明潮沟附近孔隙水及溶质交换较快,潮水浸淹会减缓潮沟附近出现物质集结。落潮时潮沟附近有明显垂向流和水平流,远潮沟地带主要为水平流。潮沟附近土壤通气条件较好。这些模拟结果较好的吻合了潮沟附近较盐沼内部盐沼植物长势较好的现象。  相似文献   

3.
海岸带盐沼植被可以减缓流速,具有重要的缓流固滩功能。本文以长江口崇明东滩盐沼区植被海三棱藨草(Scirpus Mariqueter)为研究对象,设置“光滩—植被带边缘—植被带”的观测样带,研究生长中期、生长后期和枯萎期不同物候期海三棱藨草缓流能力的差异。结果表明:海三棱藨草植被带具有显著的缓流能力,平均流速小于相邻光滩,缓流能力强于相邻光滩,单位距离流速衰减率是光滩的1.47~3.48倍;不同物候期缓流能力存在差异,呈现生长中期>生长后期>枯萎期的规律,生长中期、生长后期和枯萎期的单位距离流速衰减率分别为1.15%,1.06%和0.50% m-1。海三棱藨草植被带的单位距离流速衰减率与植被带边缘流速呈正相关,3个物候期的相关性系数(R)均大于0.80;除枯萎期为正相关外,生长中期、生长后期植被单位距离流速衰减率与边缘水深为负相关,R的绝对值均超过0.90。  相似文献   

4.
珠江网河水沙分配变化及其对伶仃洋水沙场的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用二维ECOMSED模型对径流来水来沙变化前后的1978年和1999年伶仃洋洪水期水动力场和悬沙场进行模拟,结果表明:伶仃洋水动力场整体增强,但不同地貌单元水动力变化具有明显差异.分流比变化后洪水期伶仃洋西槽、东槽和中滩水动力增强,涨潮和落潮流速普遍增大0.1m/s;西部各口门区和西滩涨潮流势减弱,径流优势更加明显,但西滩三个口门水道及滩面潮沟落潮流速增大约0.1 m/s;东滩水动力特征变化不大.悬沙浓度亦整体升高,平均增加了0.02~0.05 kg/m3,悬沙高值区范围扩大,0.10 kg/m3等值线由西槽西侧明显向东推进到沿东槽南北向分布,径流来沙的影响范围东扩.  相似文献   

5.
在进行庵东潮坪水文要素定点测量的基础上,对地貌特征,沉积粒度,沉积构造及重向剖面作了全面分析与研究。结果表明,滩地位于杭州湾进、退潮流的交会点,控制其发育的主动力为潮汐作用,具明显的不规则半日潮特性,涨潮流强度远大于落潮流,造就了宽达十余公里的潮滩地貌。滩地水动力深受湾内水流影响,高潮期服从其总体潮流流向,导致潮坪上发育众多与杭州湾深槽系统相连的潮沟,破坏了沉积物正常分布规律,高潮坪存在一定向平行岸线的大型潮沟,受强劲水流影响,沉积粒度粗化,并因快冲快淤而产生变形构造;中潮坪接受退潮期潮沟漫岸物质,粒度相对较小,分选性变差,沉积构造以直脊流水波痕及板状交错层理为主;低潮坪潮流作用大、沉积粒度粗,分选性最佳,发育小型流水波痕,内部构造以槽状交错层理,“青鱼刺”层理及再作用构造为特征。潮坪近岸处潮沟迁移层序及浪成波痕层理的发现反映水动力异常强大,威胁人工海塘的安全,建议停止进一步围垦滩涂,采取促淤方法,抑制潮沟的发育,以维持滩地稳定。  相似文献   

6.
波流作用于海床产生动态孔隙水压力,如不能及时消除会在其内部产生累积孔隙水压力,相邻两点间的孔隙水压力差值造成的水力梯度产生渗流力,渗流力引起水流动,海床表面为排水界面,从而会在海床内部形成向上的渗流力作用于泥沙颗粒上,使泥沙发生启动向海床表层运移,从而形成一定范围的粗颗粒层。本文采用数值模拟对不同流速下的海床累积孔隙水压力进行了研究,同时分析了硬壳层的存在对海床累积孔隙水压力的影响规律,根据取得的不同流速下海床内部的累积孔隙水压力值,计算海床任意位置处的渗流压力梯度,采用王虎等(2014)推导建立的海床临界冲刷深度的计算方法,分析不同流速下的硬壳层形成深度。结果表明: 海流流向与波浪行进方向一致时,对累积孔隙水压力起促进作用,流速越大累积孔隙水压力越大,反之对累积孔隙水压力有抑制作用。表面硬壳层的存在会显著促进累积孔压的消散,累积孔隙水压力沿深度分布的极值均出现在下层原始海床中,流速U0=0m ·s-1时硬壳层厚度由1m增加到3m,极值点深度下降了1.38m。累积孔隙水压力引起的渗流力对于海床泥沙启动影响显著,在流速U0=0m ·s-1,U0=1m ·s-1时泥沙启动深度均为海床1.5m深度处,并且海流流向与波浪行进方向一致时,会产生较大ΔP/ΔL值带动较粗的泥沙颗粒至海床表层,但对泥沙启动的最大深度影响不大。  相似文献   

7.
王宏  刘硕  万鲁河  孙夕涵 《冰川冻土》2015,37(5):1275-1282
受春季冰雪消融的影响,我国北方地区的河流会形成桃花汛期,期间河流的水位、水深和流场较其它季节会发生较大变化,从而对流域水环境管理和水资源保护的利用产生影响.为科学地对松花江哈尔滨段在冰雪消融期水动力变化情况进行分析,利用ArcGIS 10.0对DEM影像进行矢量化,在Delft3D-RGFGRID中创建正交曲线网格,基于EFDC模型建立松花江哈尔滨市段二维河流数值水动力模型.模拟了2014年1月-10月间的整个河段不同时空条件下的水动力变化情况,根据哈尔滨市水文站2013年、2014年实测数据对模型的参数和模拟结果进行率定和验证,模拟水位与实测水位最大相差0.33 m,相对误差<10%,吻合度高.模拟结果表明:整个江段平均水位在桃花汛期可达116.38 m,丰水期进一步上升至116.54 m,枯水期为115.64 m,平水期为116.23 m.朱顺屯和阿什河口断面水深在丰水期都明显大于桃花汛期,呼兰河口和大顶子山断面两汛期的水深几乎持平,大顶子山断面水深在各时期都较浅,附近易发生冰塞.朱顺屯、阿什河口、呼兰河口大顶子山桃花汛期流速分别为0.55、0.61、0.43、0.57 m·s-1;丰水期流速分别为0.59、0.66、0.47、0.63 m·s-1,各断面桃花汛期的流速与丰水期流速相当,略小于丰水期,流向平稳无涡旋.该模型可以较好的模拟河道水力要素随时间及空间演变规律,以便在不同典型水文年进行水力模拟和预测,可为松花江冬春季通航管理、水资源配置、水质模拟、水质目标管理、水环境容量计算和污染物总量减排提供决策依据.  相似文献   

8.
特枯水文年长江河口汛期盐水入侵观测分析   总被引:6,自引:1,他引:5       下载免费PDF全文
基于2006年汛期10月长江干流大通水文站逐时水位流量资料和长江口区现场实测水文、盐度资料,探讨了特枯水文年份在大型水利枢纽调控影响下的长江口区汛期盐水入侵及其对淡水资源的影响。结果表明:①2006年汛期10月大潮期间,外海上溯至北支的咸潮强度较大,倒灌南支严重,导致观测期间陈行水库、宝钢水库河段不存在淡水资源;②北支高盐度的咸水倒灌主要经白茆沙北水道而进入南支,长江入海冲淡水则主要由白茆沙南水道下泄入南支,两股不同性质的水流在白茆沙尾部汇合,其影响范围可到南港吴淞口;③观测期间,外海高盐水团经南北槽上溯,其强度和上溯距离可影响到吴淞口,致使除吴淞口附近水域存在淡水资源外,南港吴淞口以下河段皆为高盐水体覆盖。  相似文献   

9.
海水位上升条件下软土地基竖向位移数值模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
涨潮过程中海水水位上升会对地基竖向位移产生显著影响。本文以某填海区为工程背景,就地基在加固后受渗流作用的情况建立数值模型,对地基竖向位移进行模拟并分析其影响规律。结果表明:(1)初始水位时,地基处于稳定状态,竖向位移在较小范围内波动,在水位上升过程中,竖向位移在水位上升初期增幅较大,之后增长速率趋近于零。(2)海水水位逐渐上升,通过数值模拟得出孔隙水压力沿渗流方向呈阶梯式递减,不同水位峰值均出现在地基临水面坡顶处,应力集中现象明显,土体应力初期变化显著,后期趋于平稳。(3)地基在沉降过程中经历"平衡一发展一极限"三个阶段。 更多还原  相似文献   

10.
非饱和堤岸的渗流特征及其稳定性研究   总被引:2,自引:0,他引:2  
张芳枝  陈晓平 《岩土力学》2011,32(5):1561-1567
通过试验确定了非饱和黏土层的土-水特征曲线和强度参数,通过理论分析建立了非饱和堤岸渗流-应力耦合模型。在此基础上,利用耦合计算程序分析了非饱和土堤岸在河水位变动时的非稳定渗流场特征,结合强度折减有限元法分析了河水位反复升降后非饱和堤岸稳定性的变化。结果表明:水位快速上升时,堤脚渗透流速下降后又逐步上升并趋向稳定,河水位快速上升使堤岸边坡的稳定性降低,随着渗流场中孔隙水压力的调整,堤岸边坡的安全系数又有所回升;河水位骤降时,黏性土层饱和度变化相对滞后,水位骤降加大了堤岸的渗透流速,边坡的稳定性迅速降低,水位下降约120 h后堤岸边坡进入较危险时段;非饱和土的基质吸力提高了堤岸边坡整体稳定性,河水位反复升降降低了堤岸边坡整体稳定性,且河水位越低,水位反复升降对堤岸稳定性产生的影响越大  相似文献   

11.
Surface films on marsh creeks form water-air interfaces of high biological activity. The development, movement, deposition, and breakup of the tidal creek surface film in a naturalSpartima alterniflora-dominated salt marsh in Delaware were followed seasonally over tidal cycles. The metabolic activity, i.e., photosynthesis and respiration, of the surface film and underlying water were determined in the field at the time of peak film formation, just prior to high tide, and the particulate material and chlorophylla were quantified over the tidal cycles. The quantities of organic and inorganic components of the particulate material were all significantly higher in the surface film than in the underlying water (on a volume basis). Numbers of algal cells and quantities of chlorophyll were orders of magnitude greater in the surface film than in the water column. Photosynthesis and respiration were significantly higher in the surface film than in the underlying water. The spectrum of fatty acids was more diverse and their total content was significantly greater in the surface film than in the water column, indicating a concentrated food source contributed by the film as well as a biological richness of the film. When water in the creek flooded the marsh plain at high tide, film deposition was greatest on simulated creek bankS. alterniflora stems, compared to stems along rivulets in the marsh and those in the marsh plain. Using surface film dry weight measurements on an areal basis and film velocity in the creek, both measured throughout a tidal cycle during the summer, it was determined that approximately 12 kg (dry weight) of particulate material moved on the creek surface (2 m wide) past a given point on the flood tide, and 14 kg moved in the opposite direction on the ebb tide. The biological and physical data collected in this study illuminate the contribution of the surface film to the biological (food web) and physical (sediment transport and deposition) functions of a salt marsh.  相似文献   

12.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

13.
The amount of nitrogen present as ammonia, nitrate, nitrite, dissolved organic nitrogen, and particulate nitrogen was determined for nearshore Georgia shelf waters and for tidal water inundating a 0.5 hectare dikedSpartina alterniflora salt marsh in the adjacent estuary. Concentrations of ammonia, nitrate, and nitrite were comparatively low in offshore water (<2.2 μg-at N/1), and in high tide water in the marsh (<9.9 μg-at N/1). High concentrations of ammonia, up to 73.4 μg-at N/1, were measured in low tide water draining from marsh. The largest pools of nitrogen in offshore water and in high tide water in the marsh creek were dissolved organic nitrogen (DON) (2.5 to 20.4 μg-at N/1) and particulate nitrogen (PN) (0.1 to 30.0 μg-at N/1). Concentrations in marsh creek water at low tide were higher, ranging from 4.4 to 38.0 μg-at N/1 for DON and from 13.0 to 239.0 μg-at N/1 for PN. Comparisons of the average concentrations of dissolved and particulate forms of nitrogen in the marsh tidal creek during flood and during ebb tide suggested no net movement of the inorganic nitrogen nutrients, a net influx of PN to the marsh, and a net outflux of DON from the marsh.  相似文献   

14.
Coastal salt marshes represent an important coastal wetland system. In order to protect coastlines from erosion and rapid increase in accumulation rate, Spartina alterniflora (S. alterniflora) was introduced into the Chinese coast. Two study areas (Wanggang and Quanzhou Bay) were selected that represent the plain type and embayment type of the coastal salt marshes. In situ measurements show that the tidal current velocities are stronger on the intertidal mudflat without S. alterniflora than that with S. alterniflora, and the velocity above the canopy surface is larger than that in the salt marsh canopy. The existence of S. alterniflora also influences the velocity structure above the bare flat during ebb tide. With the decrease in current flow velocity when seawater enters into the S. alterniflora marsh, suspended sediments are largely entrapped on the marsh surface, leading to increase in sedimentation rates and change in physical evolution processes of the coastal salt marshes. The highly developed root systemof S. alterniflora induces sediment mixing and exchange between subsurface sediment strata and affects the vertical sediment distribution remarkably. The sedimentation rate of S. alterniflora marsh at the Wanggang area is much higher than the relative sea level rise rate, where rapid progradation of theWanggang saltmarshes that is protecting the coast from sea erosion is observed.  相似文献   

15.
Coastal wetlands are receiving increased consideration as natural defenses for coastal communities from storm surge. However, there are gaps in storm surge measurements collected in marsh areas during extreme events as well as understanding of storm surge processes. The present study evaluates the importance and variation of different processes (i.e., wave, current, and water level dynamics with respect of the marsh topography and vegetation characteristics) involved in a storm surge over a marsh, assesses how these processes contribute to storm surge attenuation, and quantifies the storm surge attenuation in field conditions. During the Fall of 2015, morphology and vegetation surveys were conducted along a marsh transect in a coastal marsh located at the mouth of the Chesapeake Bay, mainly composed of Spartina alterniflora and Spartina patens. Hydrodynamic surveys were conducted during two storm events. Collected data included wave characteristics, current velocity and direction, and water levels. Data analysis focused on the understanding of the cross-shore evolution of waves, currents and water level, and their influence on the overall storm surge attenuation. Results indicate that the marsh area, despite its short length, attenuates waves and reduces current velocity and water level. Tides have a dominant influence on current direction and velocity, but the presence of vegetation and the marsh morphology contribute to a strong reduction of current velocity over the marsh platform relative to the currents at the marsh front. Wave attenuation varies across the tide cycle which implies a link between wave attenuation and water level and, consequently, storm surge height. Storm surge reduction, here assessed through high water level (HWL) attenuation, is linked to wave attenuation across the front edge of the marsh; this positive trend highlights the reduction of water level height induced by wave setup reduction during wave propagation across the marsh front edge. Water level attenuation rates observed here have a greater range than the rates observed or modeled by other authors, and our results suggest that this is linked to the strong influence of waves in storm surge attenuation over coastal areas.  相似文献   

16.
In a large (8 ha) salt marsh restoration site, we tested the effects of excavating tidal creeks patterned after reference systems. Our purposes were to enhance understanding of tidal creek networks and to test the need to excavate creeks during salt marsh restoration. We compared geomorphic changes in areas with and without creek networks (n = 3; each area 1.3 ha) and monitored creek cross-sectional areas, creek lengths, vertical accretion, and marsh surface elevations for 5 yr that included multiple sedimentation events. We hypothesized that cells with creeks would develop different marsh surface and creek network characteristics (i.e., surface elevation change, sedimentation rate, creek cross-sectional area, length, and drainage density). Marsh surface vertical accretion averaged 1.3 cm yr−1 with large storm inputs, providing the opportunity to assess the response of the drainage network to extreme sedimentation rates. The constructed creeks initially filled due to high accretion rates but stabilized at cross-sectional areas matching, or on a trajectory toward, equilibrium values predicted by regional regression equations. Sedimentation on the marsh surface was greatest in low elevation areas and was not directly influenced by creeks. Time required for cross-sectional area stabilization ranged from 0 to > 5 yr, depending on creek order. First-order constructed creeks lengthened rapidly (mean rate of 1.3 m yr−1) in areas of low elevation and low vegetation cover. New (volunteer) creeks formed rapidly in cells without creeks in areas with low elevation, low vegetation cover, and high elevation gradient (mean rate of 6.2 m yr−1). After 5 yr, volunteer creeks were, at most, one-fourth the area of constructed creeks and had not yet reached the upper marsh plain. In just 4 yr, the site’s drainage density expanded from 0.018 to reference levels of 0.022 m m−2. Pools also formed on the marsh plain due to sediment resuspension associated with wind-driven waves. We conclude that excavated creeks jump-started the development of drainage density and creek and channel dimensions, and that the tidal prism became similar to those of the reference site in 4–5 yr.  相似文献   

17.
This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.  相似文献   

18.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号