首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300–350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting.Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c′ shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S–C′ structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system.Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The western lobe of the Deblois pluton and the Lucerne pluton have been recognized as the sources, respectively of the Third Lake Ridge and Morrison Ridge granite slivers. Restoration of both granite slivers to their presumed original positions yields approximately 25 km of dextral strike-slip displacement along only the Kellyland and synthetic ductile shear zones.  相似文献   

2.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

3.
A temporal seismic network recorded local seismicity along a 130 km long segment of the transpressional dextral strike-slip Liquiñe-Ofqui fault zone (LOFZ) in southern Chile. Seventy five shallow crustal events with magnitudes up to Mw 3.8 and depths shallower than 25 km were observed in an 11-month period mainly occurring in different clusters. Those clusters are spatially related to the LOFZ, to the volcanoes Chaitén, Michinmahuida and Corcovado, and to active faulting on secondary faults. Further activity along the LOFZ is indicated by individual events located in direct vicinity of the surface expression of the LOFZ. Focal mechanisms were calculated using deviatoric moment tensor inversion of body wave amplitude spectra which mostly yield strike-slip mechanisms indicating a NE–SW direction of the P-axis for the LOFZ at this latitude. The seismic activity reveals the present-day activity of the fault zone. The recent Mw 6.2 event near Puerto Aysén, Southern Chile at 45.4°S on April 21, 2007 shows that the LOFZ is also capable of producing large magnitude earthquakes and therefore imposing significant seismic hazard to this region.  相似文献   

4.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

5.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

6.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   

7.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

8.
With oblique rifting, both extension perpendicular to the rift trend and shear parallel to the rift trend contribute to rift formation. The relative amounts of extension and shear depend on α, the acute angle between the rift trend and the relative displacement direction between opposite sides of the rift. Analytical and experimental (clay) models of combined extension and left-lateral shear suggest the fault patterns produced by oblique rifting. If α is less than 30°, conjugate sets of steeply dipping strike-slip faults form in rifts. Sinistral and dextral strike-slip faults trend subparallel and at large angles to the rift trend, respectively. If α is about 30°, strike-slip, oblique-slip and/or normal faults form in rifts. Faults with sinistral and dextral strike slip trend subparallel and at large angles to the rift trend, respectively. Normal faults strike about 30° counterclockwise from the rift trend. If α exceeds 30°, normal faults form in rifts. They have moderate dips and generally strike obliquely to the rift trend and to the relative displacement direction between opposite sides of the rift. If α equals 90°, the normal faults strike parallel to the rift trend and perpendicularly to the displacement direction.The modeling results apply to the Gulf of California and Gulf of Aden, two Tertiary continental rift systems produced by combined extension and shear. Our results explain the presence and trends of oblique-slip and strike-slip faults along the margins of the Gulf of California and the oblique trend (relative to the rift trend) of many normal faults along the margins of both the Gulf of California and the Gulf of Aden.  相似文献   

9.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

10.
The Changle–Nanao ductile shear zone was developed from a suture zone. The evidence from the ductile fabrics and mylonitic microstructures indicates that the strike-slip was sinistral during pre-collision. It became dominantly dextral in the syn-collision stage in late Early Cretaceous. The dextral strike-slip movement continued in the post-collision stage with extension as the dominant process. The strike-slip movement of the zone was strictly controlled by dynamics of collision between the Fujian (Min)–Taiwan (Tai) microcontinent and the Fujian (Min)–Zhejiang (Zhe) Mesozoic volcanic arc during the time interval of 100–120 Ma. The Min–Tai microcontinent in which the ductile shear zone developed might have been located originally to the south of its present position. The northward migration of the microcontinent had contributed to a few hundred kilometers of drift rather than a shear displacement. The real shear displacement is small due to the change of strike-slip direction from sinistral to dextral.  相似文献   

11.
依据走滑断裂的运动学和年代学,确认滇西腾冲地区新生代大型走滑断裂带变形作用的三个阶段:1)始新世初(54-56Ma),在槟榔江两岸出露的与新特提斯俯冲和两大陆碰撞相关的左旋走滑-逆冲断裂,由此推断腾冲地块西缘南北向展布格局是两大陆碰撞后发生顺时针旋转达90°的结果.2)渐新世-中新世,腾冲地块东缘的高黎贡右旋走滑断裂和西缘的那邦右旋走滑断裂存在两个走滑活动的峰期:24-19Ma和11-14Ma,早期与Tapponnier模式中挤出块体东边界红河-哀牢山左旋走滑断裂活动的时限相一致,指示高黎贡和那邦右旋走滑断裂在此时期是挤出的印支地块的西边界;晚期与安达曼海的扩张、缅甸境内实皆断裂的右旋活动相一致,可能是此期地块再次发生挤出的结果.3)中新世末,约5-8Ma间两大陆的进一步会聚,引起了腾冲地区岩石圈结构的重要变化,腾冲地块发生了向南的挤出和顺时针的旋转,促成了一系列与此前右旋走滑相关的盆地的折返和南北向凹陷盆地的形成,制约了腾冲火山岩的喷发和整个地区的快速抬升.腾冲地块及其周缘新生代断裂带多阶段运动的转换对揭示青藏高原东南部块体运动型式具有重要的研究意义.  相似文献   

12.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

13.
Antimony- and Pb–Sb-quartz veins from the Bragança district, Portugal, are mainly hosted by Silurian phyllites. Antimony–Au-quartz veins from the Dúrico–Beirã region are mainly hosted by a Cambrian schist–metagraywacke complex, as well as Ordovician phyllites and quartzites. The deposits were mostly exploited in the late 19th Century. Mineralogical characteristics and chemical compositions of individual ore minerals are similar in the two areas. First and second generations of arsenopyrite precipitated at 390 and 300 °C, respectively. Berthierite and stibnite are the most abundant Sb-bearing minerals and precipitated between 225 and 128 °C, native antimony at < 200 °C. Drastic fluid cooling is the main cause of mineral precipitation. The Pb isotope compositions of stibnite suggest a homogeneous crustal source of lead, from the metasedimentary sequences, for Sb, Pb–Sb and Sb–Au deposits in both areas, which is consistent with the findings for comparable mineralizations elsewhere in Europe. Remobilization of Pb is related to Variscan metamorphism and deformation.  相似文献   

14.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

15.
Kilometer-scale, shallowly dipping, NW-striking top-to-the NE reverse and dextral strike-slip shear zones occur in metamorphic rocks of north Golpaygan. These metamorphic rocks are exposed at the NE margin of the central part of the Sanandaj–Sirjan zone in the hinterland of the Zagros orogen. NW-striking top-to-the NE normal shear zones were also found in a small part of the study area. Structural evidence of three deformation stages were found. Pre-mylonitization metamorphic mineral growth happened during D1. The main mylonitization event was during the D2 deformational event, following coaxial refolding, synchronous to retrograde metamorphism of amphibolite to greenschist facies in the Late Cretaceous–Paleocene, and before D3 folding and related mylonitization. We documented the systematic changes in the orientations of D2 linear fabrics especially stretching lineations and superimposition relations of structures. It is concluded that the dextral strike-slip and dip-slip shear zones were coeval kinematic domains of partitioned dextral transpression. The shallowly dipping reverse and strike-slip shear zones are compatible with partitioning in a very inclined transpressional model. Fabric relations reflect that the top-to-the NE normal shear zones were not produced during deformation partitioning of inclined dextral transpression. The Late Cretaceous–Paleocene strain partitioning was followed by later N–S shortening and NE-extension in the north Golpaygan area.  相似文献   

16.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

17.
Zones of transpressional shear deformation accommodate strike-slip and oblique-slip displacements. Field work in a transpressive shear zone, and transpressional analogue clay-box modelling, show that a P-oriented foliation and associated P-shears are preferentially developed over the more common R1 Riedel-shears. The Carboneras fault system (CFS) in SE Spain is a left-lateral transpressional shear zone with an internal geometry characterized by first-order Y-oriented faults and widespread P-oriented second-order faults. The mesoscopic to microscopic gouge fabric reflects the regional architecture of the shear zone being dominated by a pervasive Poriented foliation and discrete Y- and P-shears. Friction experiments carried out to investigate the textural evolution of gouge fabrics showed four textural stages of fabric development, from foliation formation to extreme shear localization resulting in cross-gouge failure. Transpression clay-box models favoured the formation of secondary P-oriented shear fractures and P-oriented shear lenses. Further deformation caused differential shear lens rotation and shear lens orientations closer to the mean displacement direction. Our field studies and laboratory analogue experiments indicate that shear zones dominated by P-shears are diagnostic of a transpressional deformation regime.  相似文献   

18.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

19.
The northernmost part of the oil-producing Austral Basin, known as Aisén Basin or Río Mayo Embayment (in central Patagonian Cordillera; 43–46°S), is a special area within the basin where the interplay between volcanism and the initial stages of its development can be established. Stratigraphic, paleontologic and five new U–Pb SHRIMP age determinations presented here indicate that the Aisén Basin was synchronous with the later phases of volcanism of the Ibáñez Formation for at least 11 m.yr. during the Tithonian to early Hauterivian. In this basin marine sedimentary rocks of the basal units of the Coihaique Group accumulated overlying and interfingering with the Ibáñez Formation, which represents the youngest episode of volcanism of a mainly Jurassic acid large igneous province (Chon Aike Province). Five new U–Pb SHRIMP magmatic ages ranging between 140.3 ± 1.0 and 136.1 ± 1.6 Ma (early Valanginian to early Hauterivian) were obtained from the Ibáñez Formation whilst ammonites from the overlying and interfingering Toqui Formation, the basal unit of the Coihaique Group, indicate Tithonian, early Berriasian and late Berriasian ages. The latter was a synvolcanic shallow marine facies accumulated in an intra-arc setting, subsequently developed into a retro-arc basin.  相似文献   

20.
The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-m-thick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic “intra-wedge” basins due to the thickening and collapse of the northern Apennine wedge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号