首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper provides the first radiometrically dated evidence of Holocene alluvial landform development in Upper Wharfedale, Yorkshire Dales. Four river terraces are identified. Terraces 1 and 2 are closely linked to Late Devensian and early Holocene environmental change, with gravel reworked from local glacial and periglacial sources prior to cementation by carbonate‐rich waters. U‐series dating of cement provides age estimates for cementation of between ca. 5.1–7.4 kyr BP for Terrace 1 and ca. 3.6–>8.0 kyr BP for Terrace 2. U‐series dating of tufas overlying Terraces 1 and 2 produced ages of ca. 4.2–4.5 kyr BP and ca. 2.1–2.2 kyr BP respectively, and provide upper age limits for terrace formation. Terrace 3 marks a change in sediment calibre, supply and sedimentation style, and 14C dating suggests that the principal source of fine‐grained material may be agricultural expansion in the Yorkshire Dales from ca. ad 600 (1350 cal. yr BP). Radiocarbon dates indicate that Terrace 4 was deposited from the eleventh century, with initiation of the contemporary floodplain between the fifteenth and seventeenth centuries ad. Both these lowest units contain sediments contaminated with heavy metals as a result of mining activities within the catchment. The evidence presented in this study is comparable to that of research undertaken in upland environments elsewhere in northern and western Britain, thereby adding to the corpus of information currently available for evaluating the fluvial geomorphological response to climate and vegetation change during the Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
3.
This article examines Holocene environmental change in Zhuye Lake in the marginal area of the Asian monsoon, NW China. Holocene environment records were obtained for the QTH01 and QTH02 sections in Zhuye Lake. The fluctuations in grain size, pollen, total organic carbon content and C/N ratios record notable environmental variation. The early Holocene (11.0 to 7.4 cal. kyr BP) was relatively arid, while vegetation coverage was sparse and primary productivity low. The optimal environment prevailed during the mid-Holocene (7.4 to 4.7 cal. kyr BP). Vegetation coverage was the densest and primary productivity the highest during the mid-Holocene. During the late Holocene (4.7 to 0 cal. kyr BP), the environment became arid, as shown by low lake level and sparse vegetation coverage. After 1.6 cal. kyr BP another strong aridification occurred. In this area, the environment was likely to have been influenced by both the Westerlies and the East Asian monsoon during the Holocene. During the early Holocene, the relatively arid environment lay in the background of the increasing East Asian monsoon and dry westerly wind. During the mid-Holocene, central Asia was controlled by the humid Westerlies, while a strong East Asian monsoon prevailed in Central China. The mid-Holocene optimum in this area benefited from an expanded East Asian monsoon and the humid Westerlies. Weakening of the East Asian monsoon caused aridification of the environment during the late Holocene. Intensification of this aridification after 1.6 cal. kyr BP might be correlated with appearance of the arid environments in the Westerly domain after ∼1.5 cal. kyr BP. These arid conditions might be affected by the decreased moisture content of the Westerlies.  相似文献   

4.
High‐resolution pollen, macrofossil and charcoal data, combined with accelerator mass spectrometry 14C dating and multivariate analysis, were used to reconstruct Holocene vegetation and fire dynamics at Urio Quattrocchi, a small lake in the supra‐mediterranean belt in the Nebrodi Mountains of Sicily (Italy). The data suggest that after 10 000 cal a BP increasing moisture availability supported closed forests with deciduous (Quercus cerris, Fagus sylvatica and Fraxinus spp.) and evergreen (Quercus ilex) species. Species‐rich closed forest persisted until 6850 cal a BP, when Neolithic activities caused a forest decline and affected plant diversity. Secondary forest with abundant Ilex aquifolium recovered between 6650 and 6000 cal a BP, indicating moist conditions. From 5000 cal a BP, agriculture and pastoralism led to the currently fragmented landscape with sparse deciduous forests (Quercus cerris). The study suggests that evergreen broadleaved species were more important at elevations above 1000 m a.s.l. before ca. 5000 cal a BP than subsequently, which might reflect less human impact or warmer‐than‐today climatic conditions between 10 000 and 5000 cal a BP. Despite land use since Neolithic times, deciduous supra‐mediterranean forests were never completely displaced from the Nebrodi Mountains, because of favourable moist conditions that persisted throughout the Holocene. Reconstructed vegetation dynamics document the absence of any pronounced mid‐ or late‐Holocene ‘aridification’ trend at the site, an issue which is controversially debated in Italy and the Mediterranean region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on pollen, spores, non‐pollen palynomorphs (NPPs) and certain geochemical elements from the ombrotrophic blanket bog of Zalama (Basque‐Cantabrian Mountains, northern Iberian Peninsula), with the support of a robust chronology based on 17 AMS 14C dates. The main results related to the last 8000 years show that, during the early middle Holocene, pines and deciduous forests were the most extensive tree formations. At the beginning of the succession, pines reach 44%, showing regional presence, whereas after 7600 cal. a BP, deciduous forests were particularly abundant. From c. 6500 cal. a BP the pollen diagram constructed from our samples shows the first anthropogenic evidence, linked with the new economic practices related to the Neolithic of the Basque‐Cantabrian Mountains. From 3300 cal. a BP the expansion of Fagus sylvatica is particularly clear, and has since then become one of the dominant forest species in this region. We also discuss the Holocene evolution of other noteworthy plant communities in southwestern Europe, such as Taxus baccata, Juglans and shrublands.  相似文献   

7.
The Chulym and Kargat Rivers flow through chains of saucer-shaped depressions, which are swampy meadows or drainage lakes. In the past, all of them were lakes short-lived in different Holocene periods. These depressions accumulated a significant amount of the Chulym and Kargat runoff and thus influenced the water balance of Lake Chany. Our studies have reconstructed the history of these depressions. A model describing their filling with sediments is proposed. The lacustrine sediments penetrated by boreholes and pits are dated by the radiocarbon method at 6.3-2.0 cal. kyr BP. The data obtained explane the long existence of Lake Chany as a shallow basin and rise in its level at ~ 2 kyr BP.  相似文献   

8.
Paired stable oxygen isotope and Mg/Ca analyses in calcite tests of the mixed-layer-dwelling planktic foraminifer Globigerinoides ruber has been used to reconstruct equatorial Indian Ocean δ18O of seawater (δ18Osw) over the last ~137 thousand years. On the basis of ice-volume-corrected δ18Osw (δ18Osw–ivc), relative changes in sea surface salinity (SSS) have been estimated. The SSS estimates suggest three episodes of higher SSS (131–113 thousand years before present (kyr BP), 62–58 kyr BP, and 30–24 kyr BP) within the last glacial period as compared with the present. SSS comparison between interglacial episodes reveals that the surface seawater over the core site was significantly saltier during the penultimate interglacial than the Holocene. We suggest that the evolution of a seasonal insolation gradient between the Indian monsoon areas and the equator over the investigated time interval was instrumental in shaping the strength of the Indian winter and summer monsoons that left their imprints on the equatorial Indian Ocean SSS via freshwater input and wind-induced mixing. The study shows that the insolation difference between northern latitudes and the equator during winter affects monsoon strength in the Indian region, especially during cold intervals.  相似文献   

9.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   

10.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

11.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Based on a large number of new boreholes in northern Denmark, and on the existing data, a revised event‐stratigraphy is presented for southwestern Scandinavia. Five significant Late Saalian to Late Weichselian glacial events, each separated by periods of interglacial or interstadial marine or glaciolacustrine conditions, are identified in northern Denmark. The first glacial event is attributed to the Late Saalian c. 160–140 kyr BP, when the Warthe Ice Sheet advanced from easterly and southeasterly directions through the Baltic depression into Germany and Denmark. This Baltic ice extended as far as northern Denmark, where it probably merged with the Norwegian Channel Ice Stream (NCIS) and contributed to a large discharge of icebergs into the Norwegian Sea. Following the break up, marine conditions were established that persisted from the Late Saalian until the end of the Early Weichselian. The next glaciation occurred c. 65–60 kyr BP, when the Sundsøre ice advanced from the north into Denmark and the North Sea, where the Scandinavian and British Ice Sheets merged. During the subsequent deglaciation, large ice‐dammed lakes formed before the ice disintegrated in the Norwegian Channel, and marine conditions were re‐established. The following Ristinge advance from the Baltic, initiated c. 55 kyr BP, also reached northern Denmark, where it probably merged with the NCIS. The deglaciation, c. 50 kyr BP, was followed by a long period of marine arctic conditions. Around 30 kyr BP, the Scandinavian Ice Sheet expanded from the north into the Norwegian Channel, where it dammed the Kattegat ice lake. Shortly after, c. 29 kyr BP, the Kattegat advance began, and once again the Scandinavian and British Ice Sheets merged in the North Sea. The subsequent retreat to the Norwegian Channel led to the formation of Ribjerg ice lake, which persisted from 27 to 23 kyr BP. The expansion of the last ice sheet started c. 23 kyr BP, when the main advance occurred from north–northeasterly directions into Denmark. An ice‐dammed lake was formed during deglaciation, while the NCIS was still active. During a re‐advance and subsequent retreat c. 19 kyr BP, a number of tunnel‐valley systems were formed in association with ice‐marginal positions. The NCIS finally began to break up in the Norwegian Sea 18.8 kyr BP, and the Younger Yoldia Sea inundated northern Denmark around 18 kyr BP. The extensive amount of new and existing data applied to this synthesis has provided a better understanding of the timing and dynamics of the Scandinavian Ice Sheet (SIS) during the last c. 160 kyr. Furthermore, our model contributes to the understanding of the timing of the occasional release of large quantities of meltwater from the southwestern part of the SIS that are likely to enter the North Atlantic and possibly affect the thermohaline circulation.  相似文献   

14.
Lake Chungará (18°15′S, 69°09′W, 4520 m above sea‐level) is the largest (22·5 km2) and deepest (40 m) lacustrine ecosystem in the Chilean Altiplano and its location in an active volcanic setting, provides an opportunity to evaluate environmental (volcanic vs. climatic) controls on lacustrine sedimentation. The Late Quaternary depositional history of the lake is reconstructed by means of a multiproxy study of 15 Kullenberg cores and seismic data. The chronological framework is supported by 10 14C AMS dates and one 230Th/234U dates. Lake Chungará was formed prior to 12·8 cal kyr bp as a result of the partial collapse of the Parinacota volcano that impounded the Lauca river. The sedimentary architecture of the lacustrine succession has been controlled by (i) the strong inherited palaeo‐relief and (ii) changes in the accommodation space, caused by lake‐level fluctuations and tectonic subsidence. The first factor determined the location of the depocentre in the NW of the central plain. The second factor caused the area of deposition to extend towards the eastern and southern basin margins with accumulation of high‐stand sediments on the elevated marginal platforms. Synsedimentary normal faulting also increased accommodation and increased the rate of sedimentation in the northern part of the basin. Six sedimentary units were identified and correlated in the basin mainly using tephra keybeds. Unit 1 (Late Pleistocene–Early Holocene) is made up of laminated diatomite with some carbonate‐rich (calcite and aragonite) laminae. Unit 2 (Mid‐Holocene–Recent) is composed of massive to bedded diatomite with abundant tephra (lapilli and ash) layers. Some carbonate‐rich layers (calcite and aragonite) occur. Unit 3 consists of macrophyte‐rich diatomite deposited in nearshore environments. Unit 4 is composed of littoral sediments dominated by alternating charophyte‐rich and other aquatic macrophyte‐rich facies. Littoral carbonate productivity peaked when suitable shallow platforms were available for charophyte colonization. Clastic deposits in the lake are restricted to lake margins (Units 5 and 6). Diatom productivity peaked during a lowstand period (Unit 1 and subunit 2a), and was probably favoured by photic conditions affecting larger areas of the lake bottom. Offshore carbonate precipitation reached its maximum during the Early to Mid‐Holocene (ca 7·8 and 6·4 cal kyr bp ). This may have been favoured by increases in lake solute concentrations resulting from evaporation and calcium input because of the compositional changes in pyroclastic supply. Diatom and pollen data from offshore cores suggest a number of lake‐level fluctuations: a Late Pleistocene deepening episode (ca 12·6 cal kyr BP), four shallowing episodes during the Early to Mid‐Holocene (ca 10·5, 9·8, 7·8 and 6·7 cal kyr BP) and higher lake levels since the Mid‐Holocene (ca 5·7 cal kyr BP) until the present. Explosive activity at Parinacota volcano was very limited between c. >12·8 and 7·8 cal kyr bp . Mafic‐rich explosive eruptions from the Ajata satellite cones increased after ca 5·7 cal kyr bp until the present.  相似文献   

15.
This paper presents a Holocene pollen record from an ombrotrophic bog in Southland, New Zealand, together with multiproxy data (testate amoebae, peat humification and plant macrofossils) from the same core to establish an independent semiquantitative record of peatland surface moisture. Linkages between reconstructed peatland surface moisture and regional forest composition are investigated using redundancy analysis of the forest pollen data constrained with predicted bog water‐table depths. Over 32% of the pollen data variance can be explained by surface moisture changes in the bog, suggesting a common cause of water‐table and regional vegetation change. Water tables were higher during the early to mid‐Holocene when the forest was dominated by podocarp taxa. Water tables lowered after about 3300 cal. yr BP coevally with the expansion of Nothofagus species, culminating with the dominance of Nothofagus subgenus Fuscospora in the past 1200 cal. yr BP. This is in apparent opposition to the warm/dry to cool/wet trend suggested by subjective interpretation of pollen data alone, from this and other studies. We suggest that during the late Holocene, drier summers associated with shifts in solar insolation caused reduced surface wetness and summer humidity, which together with a trend to cooler winters, apparently favoured the regeneration of Nothofagus species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Pollen and dinoflagellate cysts from marine sediments in core A180-48 (15°19′N, 18°06′W; 2450 m water depth; 530 cm length) are used to reconstruct palaeoenvironmental conditions of nearshore tropical west Africa during the last deglaciation. High concentrations and influxes of pollen and dinoflagellate cysts between 11 000 and 10 000 yr BP are interpreted as reflecting an increase in continental trade-wind circulation and related coastal upwelling at 15°N latitude. The sea-surface temperature difference between glacial and interglacial times was not as strong as previously suggested. Together with local (fresh) ground-water input, this smaller temperature difference may explain the persistence of the Rhizophora mangrove and Guinean gallery forests near the shore until their massive extension during the early Holocene humid maximum around 9500 yr BP. Pollen data from the core are compared with data from Rosilda N110-Z, from the continental shelf at the same latitude.  相似文献   

18.
Recent results indicate contrasting Holocene moisture histories at different elevations in arid central Asia (ACA). However, relatively little is known about Holocene temperature changes at different elevations. Here we report an independently dated peat brGDGTs-based MBT'5ME record from the Narenxia peatland (NRX) in the southern Altai Mountains. The record suggests a long-term warming trend since ~7.7 cal. kyr bp , with a warmer stage during ~7–5.5 cal. kyr bp , a cold stage during ~5.5–4 cal. kyr bp , and a warming trend over the last ~4 kyr. The long-term warming trend indicated by the NRX MBT'5ME record is largely consistent with Holocene temperature records from nearby sites covering an altitudinal range of ~1700–4100 m above sea level. This consistent long-term warming trend at different elevations differs from the long-term Holocene drying/wetting trends at high/low elevations of the Altai Mountains. We propose that the warming trend and consequent permafrost thawing at high elevations could have resulted in increased meltwater runoff, which would have contributed to the long-term wetting trend at low elevations. Our findings potentially provide an improved understanding of regional climate change and associated water resource availability, with implications for their possible future status.  相似文献   

19.
Mixed‐wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long‐term drivers of these differences between landscapes across mixed‐wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed‐wood boreal forest of north‐western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp ) and the Neoglacial period (ca. 4000 a bp ). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre‐Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre‐Alps. The onset of peat accumulation is dated to 14.4–14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post‐dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号