首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Kristineberg volcanic-hosted massive sulphide (VMS) deposit, located in the westernmost part of the Palaeoproterozoic Skellefte district, northern Sweden, has yielded 22.4 Mt of ore, grading 1.0% Cu, 3.64% Zn, 0.24% Pb, 1.24 g/t Au, 36 g/t Ag and 25.9% S, since the mine opened in 1941, and is the largest past and present VMS mine in the district. The deposit is hosted in a thick pile of felsic to intermediate and minor mafic metavolcanic rocks of the Skellefte Group, which forms the lowest stratigraphic unit in the district and hosts more than 85 known massive sulphide deposits. The Kristineberg deposit is situated lower in the Skellefte Group than most other deposits. It comprises three main ore zones: (1) massive sulphide lenses of the A-ore (historically the main ore), having a strike length of about 1,400 m, and extending from surface to about 1,200 m depth, (2) massive sulphide lenses of the B-ore, situated 100–150 m structurally above the A-ore, and extending from surface to about 1,000 m depth, (3) the recently discovered Einarsson zone, which occurs in the vicinity of the B-ore at about 1,000 m depth, and consists mainly of Au–Cu-rich veins and heavily disseminated sulphides, together with massive sulphide lenses. On a regional scale the Kristineberg deposit is flanked by two major felsic rock units: massive rhyolite A to the south and the mine porphyry to the north. The three main ore zones lie within a schistose, deformed and metamorphosed package of hydrothermally altered, dominantly felsic volcanic rocks, which contain varying proportions of quartz, muscovite, chlorite, phlogopite, pyrite, cordierite and andalusite. The strongest alteration occurs within 5–10 m of the ore lenses. Stratigraphic younging within the mine area is uncertain as primary bedding and volcanic textures are absent due to strong alteration, and tectonic folding and shearing. In the vicinity of the ore lenses, hydrothermal alteration has produced both Mg-rich assemblages (Mg-chlorite, cordierite, phlogopite and locally talc) and quartz–muscovite–andalusite assemblages. Both types of assemblages commonly contain disseminated pyrite. The sequence of volcanic and ore-forming events at Kristineberg is poorly constrained, as the ages of the massive rhyolite and mine porphyry are unknown, and younging indicators are absent apart from local metal zoning in the A-ores. Regional structural trends, however, suggest that the sequence youngs to the south. The A- and B-ores are interpreted to have formed as synvolcanic sulphide sheets that were originally separated by some 100–150 m of volcanic rocks. The Einarsson zone, which is developed close to the 1,000 m level, is interpreted to have resulted in part from folding and dislocation of the B-ore sulphide sheet, and in part from remobilisation of sulphides into small Zn-rich massive sulphide lenses and late Au–Cu-rich veins. However, the abundance of strongly altered, andalusite-bearing rocks in the Einarsson zone, coupled with the occurrence of Au–Cu-rich disseminated sulphides in these rocks, suggests that some of the mineralisation was synvolcanic and formed from strongly acidic hydrothermal fluids. Editorial handling: P. Weihed  相似文献   

2.
The Thalanga volcanic‐hosted massive sulfide deposit occurs in the Cambro‐Ordovician Mt Windsor Subprovince in northern Queensland. The orebody comprises steeply dipping, stratiform, sheet‐like, polymetallic massive sulfide lenses. Overall, the volcanic facies architecture at Thalanga is dominated by quartz‐ and/or feldspar‐phyric lavas and synvolcanic intrusions that comprise coherent facies and in situ and resedimented autoclastic facies. Systematic phenocryst logging (mineralogy, abundance, size) has been used to discriminate separate emplacement units of rhyolite in the footwall and dacite in the hangingwall. Some of the petrographically different rhyolite and dacite types can also be distinguished using immobile‐element geochemistry. Rhyolitic lavas and intrusions in the footwall are weakly to strongly altered. Apparent clastic textures resulting from hydrothermal alteration and metamorphism are widely developed in the coherent facies. Genuine clastic textures are characterised by clasts with randomly oriented internal laminar or banded fabric (e.g. rotated, flow‐laminated clasts), marked and consistent differences in quartz phenocryst abundance and/or size range between clasts and matrix, and normal grading. Mass‐flow‐emplaced, rhyolitic breccia units delineate palaeo‐sea‐floor positions in the footwall that are potentially prospective for exhalative massive sulfide mineralisation. A comparison of the distribution of clastic and coherent facies with the geometry of strongly altered zones in the footwall indicates that intense hydrothermal fluid flow was independent of the facies arrangement. The massive sulfide lenses conformably overly altered footwall rhyolite and occur in a distinctive facies association which includes coarse quartz‐phenocryst‐rich rhyolitic sills with peperitic contacts and crystal‐rich polymictic breccia. The hangingwall to the orebody consists of largely unaltered dacitic lavas and synvolcanic intrusions and minor dacitic pumice breccia, dacitic breccia and polymictic volcanic breccia. The facies architecture shows that the Thalanga massive sulfide deposit formed in a below‐storm‐wave‐base depositional environment on top of an elevated, lava‐dominated, rhyolitic volcanic centre. A modern analogue for the setting of the Thalanga massive sulfide is the PACMANUS hydrothermal field on the crest of the dacite lava‐dominated Pual Ridge in the eastern Manus backarc basin (Papua New Guinea).  相似文献   

3.
Short-wave infrared (SWIR) reflectance spectroscopy was used to characterize hydrothermal minerals and map alteration zones in the Tuwu Cu–Au deposit, Xinjiang, China. The Palaeozoic hydrothermal system at Tuwu is structurally controlled, developed in andesitic volcanic rocks and minor porphyries. Hydrothermal alteration is characterized by horizontally zoned development of quartz, sericite, chlorite, epidote, montmorillonite and kaolin about individual porphyry dykes and breccia zones, as is shown by changes outward from a core of quartz veining and silicification, through an inner zone of sericite + chlorite to a marginal zone of chlorite + epidote. The alteration system comprises several such zoning patterns. Silicification and sericitization are spatially associated with Cu–Au mineralization. Zoning is also shown by compositional variations such that Fe-rich chlorite and Al-rich sericite occur preferentially toward the core and the most intensely altered parts, whereas Mg-rich chlorite and relatively Al-poor sericite are present on the margin and the relatively weakly altered parts of the hydrothermal alteration system. The compositions of chlorite and sericite, therefore, can be potentially used as vectors to Cu–Au mineralization. Montmorillonite and kaolinite, of probable weathering origin, are located near the surface, forming an argillic blanket overlying Cu–Au mineralization. Sporadic montmorillonite is also present at depth in the hydrothermal alteration system, formed by descending groundwater. Presence of a well-developed kaolinite-bearing zone on the surface is an indication of possible underlying Cu–Au mineralization in this region. Epidote occurs widely in regional volcanic rocks, as well as in variably altered rocks on the margin of the hydrothermal mineralization system at Tuwu. The widespread occurrence of epidote in volcanic country rocks probably reflects a regional hydrothermal alteration event prior to the localized, porphyry intrusion-related hydrothermal process that led to the Cu–Au mineralization at Tuwu.  相似文献   

4.
The Ferguson Lake Ni–Cu–Co–platinum-group element (PGE) deposit in Nunavut, Canada, occurs near the structural hanging wall of a metamorphosed gabbroic sill that is concordant with the enclosing country rock gneisses and amphibolites. Massive to semi-massive sulfide occurs toward the structural hanging wall of the metagabbro, and a low-sulfide, high-PGE style of mineralization (sulfide veins and disseminations) locally occurs ~30–50 m below the main massive sulfide. Water–rock interaction in the Ferguson Lake Ni–Cu–Co–PGE deposit is manifested mostly as widespread, post-metamorphic, epidote–chlorite–calcite veins, and replacement assemblages that contain variable amounts of sulfides and platinum-group minerals (PGM). PGM occur as inclusions in magmatic pyrrhotite and chalcopyrite in both the massive sulfide and high-PGE zones, at the contact between sulfides and hornblende or magnetite inclusions in the massive sulfide, in undeformed sulfide veins and adjacent chlorite and/or epidote halos, in hornblende adjacent to hydrothermal veins, and in plagioclase–chlorite aggregates replacing garnet cemented by sulfide. The PGM are mostly represented by the kotulskite (PdTe)–sobolevskite (PdBi) solid solution but also include michenerite (PdBiTe), froodite (PdBi2), merenskyite (PdTe2), mertieite II (Pd8[Sb,As]3), and sperrylite (PtAs2) and occur in variety of textural settings. Those that occur in massive and interstitial sulfides, interpreted to be of magmatic origin and formed through exsolution from base metal sulfides at temperatures <600°C, are dominantly Bi rich (i.e., Te-bearing sobolevskite), whereas those that occur in late-stage hydrothermal sulfide/silicate veins and their epidote–chlorite alteration halos tend to be more Te rich (i.e., Bi-bearing kotulskite). The chemistry and textural setting of the various PGM supports a genetic model that links the magmatic and hydrothermal end-members of the sulfide–PGM mineralization. The association of PGM with magmatic sulfides in the massive sulfide and high-PGE zones has been interpreted to indicate that PGE mineralization was initially formed through exsolution from base metal sulfides which formed by magmatic sulfide liquid segregation and crystallization. However, the occurrence of PGM in undeformed sulfide-bearing veins and in their chlorite–epidote halos and differences in PGM chemistry indicate that hydrothermal fluids were responsible for post-metamorphic redistribution and dispersion of PGE.  相似文献   

5.
The Hongtoushan Archean Cu–Zn volcanogenic massive sulfide (VMS) deposit, which was metamorphosed (3.0–2.8 Ga) to upper amphibolite facies at temperatures between 600 and 650°C, occurs in the Hunbei granite–greenstone terrane, Liaoning Province of NE China. Stratiform cordierite–anthophyllite gneiss (CAG) that occurs hundreds of meters below the ore horizon in the Hongtoushan district corresponds to the metamorphosed semi‐conformable alteration zone of the VMS hydrothermal system, whereas the CAG that contains abundant deformed sulfide‐bearing quartz veins immediately below the main ore layer represents the metamorphosed discordant alteration zone. Whole‐rock geochemistry indicates that stratiform CAG was derived ultimately from five lithologies (basalt, basaltic andesite, andesite, dacite, and rhyolite), while discordant CAG derived from a single lithology (rhyolite). Amphibolite and biotite‐rich gneiss are identified as a metamorphosed least‐altered precursor for these CAGs. Mass change calculation indicates that, compared to the least‐altered rocks, stratiform CAG is enriched in Fe and Mg, and depleted in Na, K, Ca, Cu, Pb and Zn, while discordant CAG is enriched in Fe, Mg, Si, Na, Pb, Cu and Zn, and depleted in K. HREE and HFSE (Zr, Ti, Nb and Ta) behaved inertly during submarine alteration, whereas Rb, Sr, Ba and LREE (especially Eu) were leached off. Both stratiform and discordant CAGs are depleted in 18O, with values up to 7‰ lower than their corresponding least‐altered precursors. Addition of Fe, Mg, and depletion of Ca, K, Sr, and 18O, indicate that hydrothermal alteration for both types of CAGs was characterized by chloritization prior to metamorphism. Stratiform CAG could be used to evaluate the mineralization potential of VMS in metamorphic terranes, while discordant CAG containing sulfide‐bearing quartz veins could be a good indication for overlying stratiform massive sulfide ores as well as an exploration target itself.  相似文献   

6.
The Ansil Cu–Au volcanogenic massive sulfide deposit is located within an Archean-age cauldron infill sequence that contains the well-known Noranda base metal mining district. The deposit is unusual in that 17% of the massive pyrrhotite–chalcopyrite orebody is replaced by semi-massive to massive magnetite. Temporally associated with the magnetite formation are several calc-silicate mineral assemblages within the massive sulfide lens and the underlying sulfide stockwork vein system. Coarse-grained andradite–hedenbergite and ferroactinolite–ilvaite alteration facies formed in the immediate footwall to the massive magnetite–sulfide lens, whereas an epidote–albite–pyrite-rich mineral assemblage overprints the margins of the chlorite-rich stockwork zone. The epidote-rich facies is in turn overprinted by a retrograde chlorite–magnetite–calcite mineral assemblage, and the andradite–hedenbergite is overprinted first by ferroactinolite–ilvaite, followed by semi-massive to massive magnetite. The footwall sulfide- and magnetite-rich alteration facies are truncated by a late phase of the Flavrian synvolcanic tonalite–trondhjemite complex. Early phases of this intrusive complex are affected to varying degrees by calc-silicate-rich mineral assemblages that are commonly confined to miarolitic cavities, pipe vesicles and veins. The vein trends parallel the orientation of synvolcanic faults that controlled volcanism and hydrothermal fluid migration in the overlying cauldron succession. The magnetite-rich calc-silicate alteration facies are compositionally similar to those of volcanic-hosted Ca–Fe-rich skarn systems typical of oceanic arc terranes. Tonalite–trondhjemite phases of the Flavrian complex intruded to within 400 m of the base of the earlier-formed Ansil deposit. The low-Al trondhjemites generated relatively oxidized, acidic, Ca–Fe-rich magmatic–hydrothermal fluids either through interaction with convecting seawater, or by assimilation of previously altered rocks. These fluids migrated upsection along synvolcanic faults that controlled the formation of the original volcanogenic massive sulfide deposit. This is one of the few documented examples of intense metasomatism of a VMS orebody by magmatic–hydrothermal fluids exsolved from a relatively primitive composite sub-seafloor intrusion. Received: 15 April 1999 / Accepted: 20 January 2000  相似文献   

7.
The Paleoproterozoic Ruttan Cu–Zn volcanogenic massive-sulfide (VMS) deposit is a large, relatively low grade, bimodal-siliciclastic type deposit in the Rusty Lake volcanic belt of northern Manitoba. The deposit contained over 82.8 million tonnes of massive sulfide, of which 55.7 million tonnes were mined from 1973 to 2002. The deposit consists of a series of moderately to steeply dipping, south-facing lenses that extend along strike at the surface for 1.1 km and to a depth of 1.0 km. These lenses occur within a steeply dipping, bimodal volcanic, volcaniclastic and siliciclastic sequence. In the immediate mine area, transitional calc-alkalic to high-silica (tholeiitic), felsic, and intermediate volcanic/volcaniclastic rocks of the Mine Sequence are host to, and intercalated with, the massive-sulfide lenses. Transitional tholeiitic to calc-alkalic basalt and andesite are present in the footwall sequence, approximately 500 m down-section from the ore horizon. The overlying rocks are predominantly fine-grained volcaniclastics and siliciclastics, but include polyfragmental agglomerate that contains mafic bombs and scoriaceous felsic fragments. Syn-depositional felsic and mafic dikes, sills, and apophyses are ubiquitous throughout the Mine Sequence, including the ore lenses, indicating continued, near-vent magmatism, and volcanism during ore formation. Fabrics in altered hostrocks have consistent, down-plunge stretching lineations to the SSE that suggest the deposit has been elongated by a factor of ~1.2–1.5; otherwise, the deposit is remarkably undeformed. Syn- and post-depositional faults in the mine area have relatively minor displacements up to tens of meters. Proximal (within 200 m) footwall rocks exhibit moderate to strong chloritization, characterized by the upper greenschist to lower amphibolite facies assemblages that include cordierite–almandine–andalusite–sillimanite–biotite ± staurolite ± anthophyllite ± talc, and local silicification. The proximal hanging wall rocks are characterized by sericite ± gahnite alteration, which is restricted to within approximately 75 m of the uppermost lenses. Additional gangue minerals are anhydrite and carbonate minerals (siderite, dolomite, ankerite, and calcite), as well as chlorite, sericite, biotite, talc, and quartz. Carbonate (excluding siderite), potassium feldspar, silicification and epidotization are common distal alteration zones in the footwall to the Mine Sequence several kilometers to the northeast. There are three principal groups of massive sulfide lenses; the East lenses, the West lenses, and the Western Anomaly lenses to the far west. In general, Cu is relatively enriched at the stratigraphic base and in the center of the deposit, whereas Zn is enriched upsection and at the outer margins. Some of the Zn-rich ore exhibits primary mineralogical layering. Parts of the West and Western Anomaly lenses show two layers with Cu-rich bases and Zn-rich tops. The massive sulfide is typically 10–40-m thick; one area along the margin of the main lenses is over 130-m thick and may represent deposition adjacent to a syn-depositional fault. The main sulfide phases are pyrite, pyrrhotite, chalcopyrite, sphalerite, and galena, with tetrahedrite as the most abundant trace phase. Gahnite is ubiquitous in the chlorite-rich assemblages adjacent to the ore lenses. The average base, precious and trace metal contents estimated from Cu and Zn concentrates, and from millhead grades and recoveries. Metals easily transported as chloride and bisulfide complexes in hydrothermal fluids including: Pb, Ag, In, Cu, Cd, Au, and Zn are enriched by 1.5–2.5 orders of magnitude in comparison to the bulk continental crust. Other elements such as Sn, Mo, and As are at near-crustal concentrations, whereas Mn, Ga, and Co are significantly depleted in comparison to the crust. Calculated metal concentrations in the average hydrothermal fluid based on the average metal contents are comparable to, or higher than those measured at sediment covered ridge hydrothermal systems, which precipitate much of their metal budget in the subsurface. Average rare earth element contents for the sulfide are light rare earth element enriched (LaN/YbN=22) and range from 0.45 to 0.02x chondritic values, with a moderate negative Eu anomaly (Eu*=0.51). Metal and trace element contents in the Ruttan exhalite horizon, and in proximal (within 1–2 km) exhalites along strike from the 0.6 million tonne Dar-2 Cu–Zn deposit 12 km south of Ruttan, have positive Eu anomalies, whereas negative Eu anomalies are present at distance. The positive Eu anomalies reflect high temperature paleoseafloor hydrothermal venting and precipitation of Eu2+-enriched clays and possibly carbonates, and indicate proximity to base-metal deposits. Silver and lead are also enriched in the exhalites near the deposits, whereas Mn is enriched at ~1–3 km along strike, but not consistently. Editorial handling: B. Gemmel An erratum to this article is available at .  相似文献   

8.
Volcanic-hosted (Cu–Zn–Pb) massive sulfide mineralizations are described from four prospects in the Eastern Desert: Helgate, Maaqal, Derhib, and Abu Gurdi. Helgate and Maaqal prospects are hosted in island arc volcanics in a well-defined stratigraphic level. Massive sulfides form veins and lenses. Although these veins and lenses are locally deformed, sulfides from Helgate and Maaqal prospects show primary depositional features. They form layers and colloidal textures. Sphalerite, pyrite, chalcopyrite, and galena are the major sulfides. Gangue minerals are represented by chlorite, quartz, and calcite. The sulfide mineralizations at Helgate and Maaqal are Zn-dominated. Derhib and Abu Gurdi prospects occur as disseminations, small massive lenses, and veins along shear zones in talc tremolite rocks at the contact between metavolcanics and metasedimentary rocks. The host rocks at Derhib and Abu Gurdi are metamorphosed to lower amphibolite facies as revealed by silicate mineral assemblage and chemistry. Chalcopyrite, pyrite, sphalerite, and galena are the major sulfide minerals while pyrrhotite is less common. Recrystallization, retexturing and remobilization of sulfide minerals are reflecting postdepositional metamorphic and structural modifications. Electrum and Ag–Pb–Bi tellurides are common accessories. Gangue minerals comprise amphiboles of actinolite and actinolitic hornblende composition, talc, and chlorite. The ores at Derhib and Abu Gurdi are Cu–Zn and Zn-dominated, respectively. The distinct geological, petrographical, and geochemical differences between sulfide mineralizations at Helgate–Maaqal on one hand and Derhib and Abu Gurdi on the other hand suggest two genetic types of sulfide mineralizations; Helgate–Maaqal prospects (type 1) are similar to the Archean analogs from Canada (Noranda type), while Derhib and Abu Gurdi (type 2) show similarity to ophiolite-associated deposits similar to those described from Cyprus, Oman, and Finland. In genetic type 1, ore minerals were deposited on the seafloor; the role of postdepositional hydrothermal activity is limited. In genetic type 2, base metals were part of the ultramafic rocks and were later redistributed and mobilized during deformation to be deposited along shear zones. The dominance and diversity of tellurides in genetic type 2 highlight the role of metamorphic–hydrothermal fluids.  相似文献   

9.
Zn- and Cu-rich massive sulfide ores of volcanogenic origin [volcanogenic massive sulfide (VMS) deposits] occur as stratiform/stratabound lenses of variable size hosted by gneisses, amphibolites, and schists of the Areachap Group, in the Northern Cape Province of South Africa. The Areachap Group represents the highly deformed and metamorphosed remnants of a Mesoproterozoic volcanic arc that was accreted onto the western margin of the Kaapvaal Craton during the ∼1.0–1.2 Ga Namaquan Orogeny. Sulfur isotope data (δ34S) are presented for 57 sulfide separates and one barite sample from five massive sulfide occurrences in the Areachap Group. Although sulfides from each site have distinct sulfur isotope values, all δ34S values fall within a very limited range (3.0‰ to 8.5‰). Barite has a δ34S value of 18.5‰, very different from that of associated sulfides. At one of the studied sites (Kantienpan), a distinct increase in δ34S of sulfides is observed from the massive sulfide lens into the disseminated sulfides associated with a distinct footwall alteration zone. Sulfide–sulfide and sulfide–barite mineral pairs which recrystallized together during amphibolite- and lower granulite facies metamorphism are not in isotopic equilibrium. Sulfur isotope characteristics of sulfides and sulfates of the Zn–Cu ores in the Areachap Group are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and unsedimented mid-ocean ridges. It is thus concluded that profound recrystallization and textural reconstitution associated with high-grade regional metamorphism of the massive sulfide ores of the Areachap Group did not result in extensive sulfur isotopic homogenization. This is similar to observations in other metamorphosed VMS deposit districts and confirms that massive sulfide ores remain effectively a closed system for sulfur isotopes for both sulfides and sulfates during metamorphism.  相似文献   

10.
The Boliden deposit (8.3 Mt at 15.9 g/t Au) is interpreted to have been formed between ca. 1894 and 1891 Ma, based on two new U–Pb ID-TIMS ages: a maximum age of 1893.9?+?2.0/?1.9 Ma obtained from an altered quartz and feldspar porphyritic rhyolite in the deposit footwall in the volcanic Skellefte group and a minimum age of 1890.8?±?1 Ma obtained from a felsic mass-flow deposit in the lowermost part of the volcano-sedimentary Vargfors group, which forms the stratigraphic hanging wall to the deposit. These ages are in agreement with the alteration and mineralization being formed at or near the sea floor in the volcanogenic massive sulfide environment. These two ages and the geologic relationships imply that: (1) volcanism and hydrothermal activity in the Skellefte group were initiated earlier than 1.89 Ga which was previously considered to be the onset of volcanism in the Skellefte group; (2) the volcano-sedimentary succession of the Vargfors group is perhaps as old as 1892 Ma in the eastern part of the Skellefte district; and (3) an early (synvolcanic) deformation event in the Skellefte group is evidenced by the unconformity between the ≤1893.9?+?2.0/?1.9 Ma Skellefte group upper volcanic rocks and the ≤1890.8?±?1 Ma Vargfors sedimentary and volcanic rocks in the Boliden domain. Differential block tilting, uplift, and subsidence controlled by synvolcanic faults in an extensional environment is likely, perhaps explaining some hybrid VMS-epithermal characteristics shown by the VMS deposits of the district.  相似文献   

11.
Despite having been a target for volcanic-hosted massive sulfide (VHMS) deposits since the 1960s, few resources have been defined in the Archean Yilgarn Craton of Western Australia. Exploration challenges associated with regolith and deep cover exacerbate the already-difficult task of exploring for small, deformed deposits in stratigraphically complex, metamorphosed volcanic terranes. We present results of drill-core logging, petrography, whole-rock geochemistry and portable X-ray Fluorescence data from the King Zn deposit, to help refine mineralogical and geochemical halos associated with VHMS mineralisation in amphibolite-facies greenstone sequences of the Yilgarn Craton. The King Zn deposit (2.15?Mt at 3.47?wt% Zn) occurs as a 1–7 m-thick stratiform lens dominated by iron sulfides, in an overturned, metamorphosed volcanic rock-dominated sequence located ~140?km east of Kalgoorlie. The local stratigraphy is characterised by garnet-amphibolite and strongly banded intermediate to felsic schists, with rare horizons of graphitic schist and talc schist. Massive sulfide mineralisation is characterised by stratiform pyrite–pyrrhotite–sphalerite at the contact between quartz–muscovite schists (‘the footwall dacite’), and banded quartz–biotite and amphibole?±?garnet schists of the stratigraphic hanging-wall. A zone of pyrite–(sphalerite) and pyrrhotite–pyrite–(chalcopyrite) veining extends throughout the stratigraphic footwall. Footwall garnet-amphibolites are of sub-alkaline basaltic affinity, with a central zone dominated by chlorite?±?magnetite interpreted to represent the Cu-bearing feeder zone. SiO2, CaO, Fe2O3T, MgO and Cu concentrations are highly variable, reflecting quartz–epidote?±?chlorite?±?magnetite?±?sulfide alteration. Hydrothermal alteration in stratigraphically overlying intermediate to felsic rocks is characterised by a mineral assemblage of quartz–muscovite?±?chlorite?±?albite?±?carbonate. Cordierite and anthophyllite are locally significant and indicative of zones of Mg-metasomatism prior to metamorphism. Increases in SiO2, Fe2O3T, pathfinder elements (e.g. As, Sb, Tl), and depletions of Na2O, CaO, Sr and MgO occur in quartz–muscovite schists approaching massive sulfide mineralisation. Within all strata (including the immediate hanging-wall), the following pathfinder elements are strongly correlated with Zn: Ag, As, Au, Bi, Cd, Eu/Eu*, Hg, In, Ni, Pb, Sb, Se and Tl. These geochemical halos resemble less metamorphosed VHMS deposits across the Yilgarn Craton and suggest that although metamorphism leads to element mobility and mineral segregation at the thin-section scale, assay samples of ~20?cm length are sufficient to vector to mineralisation in amphibolite facies greenstone belts. Recognition of minerals such as Mg-chlorite, muscovite, cordierite, anthophyllite, biotite/phlogopite, and abundant garnet are significant, in addition to Al-rich phases (i.e. kyanite, sillimanite, andalusite and/or staurolite) not identified at King. Chemographic diagrams may be used to identify and distinguish different alteration trends, along with several alteration indices (e.g. Alteration Index, Carbonate–Chlorite–Pyrite Index, Silicification Index) and the abundance of normative corundum and quartz.  相似文献   

12.
The Late Archean Blake River Group is a thick succession of predominantly mafic volcanic rocks within the southern zone of the Abitibi greenstone belt. It contains a number of silicic volcanic centers of different size, including the large Noranda volcanic complex, which is host to 17 past-producing volcanogenic massive sulfide deposits. The Noranda complex consists of a 7- to 9-km-thick succession of bimodal mafic and felsic volcanic rocks erupted during five major cycles of volcanism. Massive sulfide formation coincided with a period of intense magmatic activity (cycle III) and the formation of the Noranda cauldron. Hydrothermal alteration in these rocks is interpreted to reflect large-scale hydrothermal fluid flow associated with rapid crustal extension and rifting of the volcanic complex. The alteration includes abundant albite, chlorite, epidote and quartz (silicification), which exhibit broad stratigraphic and structural control and correlate with previously mapped whole-rock oxygen isotope zonation. The Mine Sequence volcanic rocks are characterized by abundant iron-rich chlorite (Fe/Fe+Mg >0.5), hydrothermal amphibole (ferroactinolite) and coarse-grained epidote of clinozoisite composition (<10 wt% Fe 2O 3). Volcanic rocks of the pre-cauldron sequences, which contain only subeconomic stringer mineralization, are characterized by less abundant chlorite and mainly fine-grained epidote (>10 wt% Fe 2O 3) lacking the clinozoisite solid solution. Alteration in the Mine Sequence volcanic rocks persists along strike well beyond the limits of the main ore deposits (as far as several tens of kilometers) and can be readily distinguished from greenschist facies metamorphic assemblages at a regional scale. The lack of similar alteration in the pre-cauldron sequences is consistent with limited 18O-depletion and suggests that the early history of the volcanic complex did not support large-scale, high-temperature fluid flow in these rocks. Comparisons with a much smaller, barren volcanic complex in nearby Ben Nevis township reveal important differences in the alteration mineralogy between volcanoes of different size, with implications for area selection during regional-scale mineral exploration. The Ben Nevis Complex consists of a 3- to 4-km-thick succession of mafic, intermediate and felsic volcanic rocks centered on a small subvolcanic intrusion. Alteration of the volcanic rocks comprises mainly low-temperature assemblages of prehnite, pumpellyite, magnesium-rich chlorite (Fe/Fe+Mg <0.5), iron-rich epidote (>10 wt% Fe 2O 3) and calcite. Actinolite ± magnetite alteration occurs proximal to the intrusive core of the complex, but the limited extent of this alteration indicates only local high-temperature fluid circulation adjacent to the intrusion. A distal zone of carbonate alteration is located 4–6 km from the center of the volcano. Although iron-bearing carbonates are present locally within this zone, the absence of siderite argues against a high-temperature origin for this alteration. These observations do not offer positive encouragement for the existence of a fossil geothermal system of sufficient size or intensity to have produced a large massive sulfide deposit.  相似文献   

13.
The Nicholas-Denys Pb–Zn–Ag deposit, located in the Bathurst Mining Camp (New Brunswick), consists of several pyrrhotite–sphalerite–galena sulfide lenses hosted by black mudstone of the Millstream Formation of the Fournier Group, deposited in an Ordovician backarc basin. The Nicholas-Denys sulfide lenses and hydrothermal alteration are conformable to the bedding-parallel S1 regional foliation, and are sheared parallel to the Rocky Brook-Millstream shear zone, indicating a pre-Devonian deformation timing for mineralization. Reduced sulfur for Nicholas-Denys sulfides comes from bacterial reduction of Ordovician seawater sulfates in a system open to sulfates under partially oxygenated bottomwater conditions, with addition of magmatic sulfur from underlying mafic volcanic rocks. Lead was leached from the backarc basin sediments of the Millstream Formation mudstone and from underlying synvolcanic gabbros. The mineralizing fluid for Nicholas-Denys sulfides was reduced and acidic, favorable for precipitation of a pyrrhotite-rich mineralization. Characteristics of the Nicholas-Denys deposit are compatible with a SEDEX-type classification.  相似文献   

14.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

15.
The Xitieshan deposit (~ 64 Mt at 4.86% Zn, 4.16% Pb, 58 g/t Ag, and 0.68 g/t Au) is hosted by the Middle to Late Ordovician Tanjianshan Group of the North Qaidam tectonic metallogenic belt, NW China. This belt is characterized by island arc volcanic, ultra-high pressure (UHP) metamorphic and ophiolitic rocks. The Tanjianshan Group constitutes a succession of metamorphosed bimodal volcanic and sedimentary rocks, which are interpreted to have formed on the margin of a back-arc ocean basin between the Qaidam block and the Qilian block.Four stratigraphic units are identified within the Ordovician Tanjianshan Group. From northeast to southwest they are: 1) unit a, or the lower volcanic-sedimentary rocks, comprising bimodal volcanic rocks (unit a-1) and sedimentary rocks (unit a-2) ranging from carbonates to black carbonaceous schist; 2) unit b, or intermediate-mafic volcaniclastic rocks, characterized by intermediate to mafic volcaniclastic rocks intercalated with lamellar carbonaceous schist and minor marble lenses; 3) unit c, a purplish red sandy conglomerate that unconformably overlies unit b, representing the product of the foreland basin sedimentation during the Early Silurian; 4) unit d, or mafic volcanic rocks, from base to up, comprising the lower mafic volcaniclastic rocks (unit d-1), middle clastic sedimentary rocks (unit d-2), upper mafic volcaniclastic rocks (unit d-3), and uppermost mafic volcanic rocks (unit d-4). Unit a-2 hosts most of the massive sulfides whereas unit b contains subordinate amounts.The massive stratiform lenses constitute most of the Xitieshan deposit with significant amount of semi-massive and irregularly-shaped sulfides and minor amounts in stringer veins. Pyrite, galena and sphalerite are the dominant sulfide minerals, with subordinate pyrrhotite and chalcopyrite. Quartz is a dominant gangue mineral. Sericite, quartz, chlorite, and carbonate alteration of host rocks accompanies the mineralization.U-Pb zircon geochronology yields three ages of 454 Ma, 452 Ma and 451 Ma for the footwall felsic volcanic rocks in unit a-1, sedimentary host rocks in unit a-2 and hanging-wall unit b, respectively. The Xitieshan deposit is considered to be coeval with the sedimentation of unit a-2 and unit b of the Tanjianshan Group. The Xitieshan deposit has been intensely deformed during two phases (main ductile shear and minor ductile-brittle deformation). The main ductile shear deformation controls the general strike of the ore zones, whereas minor deformation controls the internal geometry of the ore bodies. 40Ar-39Ar age of muscovite from mylonitized granitic gneisses in the ductile shear zone is ~ 399 Ma, which is interpreted to date the Xitieshan ductile shear zone, suggesting that Early Devonian metamorphism and deformation post-dated the Tanjianshan Group.The Xitieshan deposit has many features similar to that of the Bathurst district of Canada, the Iberian Pyrite Belt of Spain, the Wolverine volcanogenic massive sulfide deposit in Canada. Based on its tectonic setting, host-rock types, local geologic setting, metal grades, geochronology, temperatures and salinities of mineralizing fluid and source of sulfur, the Xitieshan deposit has features similar to sedimentary exhalative (SEDEX) and VMS deposits and is similar to volcanic and sediment-hosted massive sulfide (VSHMS) deposits.  相似文献   

16.
Alteration zones (more commonly foot wall alteration zones) are related to volcanic-hosted massive sulfide (VMS) deposits and represent unique features that may be targeted during exploration. Of these, the chloritic foot wall alteration pipe is the most extensive and characteristic of VMS deposits. This feature is geochemically identified by a strong relative enrichment in aluminium and magnesium and a coupled depletion in calcium and sodium, giving rise to chloritic rocks in the primary environment of formation. During high grade regional metamorphism such chloritic precursor rock types are replaced by an unusual mineral paragenesis, typically containing magnesium rich cordierite, phlogopite, orthoamphiboles or orthopyroxenes and aluminium rich minerals such as sillimanite and corundum. This suggests that the unusual geochemical features of the alteration zone, retained during the deformation and metamorphism, should be recognisable in lithogeochemical exploration.The massive sulfide deposit in the eastern part of the metamorphic Namaqua Province, South Africa, at Areachap, Kantienpan and the defunct Prieska Cu–Zn Mine are hosted by a Mid-Proterozoic volcano sedimentary succession known as the Areachap Group. These deposits were affected by a complex deformation and metamorphic history and represent examples of upper amphibolite to granulite grade metamorphosed VMS deposits.The application of the known lithogeochemical methods is especially complicated where the geology is not well understood, due to the poor rock exposure of complexly deformed and metamorphosed areas, such as in the eastern part of the Namaqua Province.The box plot presents a more readily applicable lithogeochemical method to characterize and identify the alteration process, but it was designed for relatively un-metamorphosed environments. It is demonstrated here that the box plot may also be applied to high-grade metamorphic terrains and that the mineral phases used in defining the boxplot in low grade metamorphic environments may be replaced by their equivalents in high grade metamorphic terrains. The compositional trends of the metamorphic minerals themselves may be used in defining the boxplot for high grade metamorphic terrains. These include the transition of: annite to phlogopite; grossular to almandine or pyrope, augite to enstatite or clinoenstatite, and hornblende to gedrite or cummingtonite. Close to the ore zone, the relative Mg content of pyroxene, cordierite and biotite are higher than further away from this zone. It could be demonstrated that the changes in the mineral compositions are gradational when comparing unaffected rocks with progressively more altered wall rocks.Conclusions based on an application of the isocon method demonstrate that primary footwall alteration zones in the Areachap Group's VMS deposits are characterized by elemental depletion of Na2O, CaO, Sr, Ni, V and La and enrichment of MgO, Fe2O3(total), S, Zn, SiO2, Co and F. It is shown that the whole rock compositions of rocks that were independently identified as the metamorphic equivalents of altered rocks, using the isocon method, plot in the correct place in the box plot for high grade regionally metamorphosed terrains. This establishes the box plot as an effective and practical tool for lithogeochemical exploration for VMS deposits in complexly deformed high grade metamorphosed terrains.  相似文献   

17.
The Canatuan and Malusok massive sulfide deposits are located near Siocon, Zamboanga del Norte, in southwestern Mindanao, Philippines. The Canatuan–Malusok area is underlain by the Jurassic–Cretaceous Tungauan schists, which form much of the Zamboanga Peninsula. The volcanic strata at Canatuan and Malusok can be traced for >7 km along strike and is host to at least three discrete massive sulfide bodies: Canatuan, Malusok and SE Malusok. Basal basaltic andesite volcanic rocks are generally chemically uniform and show only moderate alteration. The massive sulfide deposits occur in overlying rhyolitic to rhyodacitic volcanic rocks that are altered to a schistose assemblage of quartz, sericite, chlorite and pyrite. The alteration is texturally destructive but graded clastic beds are locally observed. Despite tropical saprolitic weathering, four lithogeochemical subunits of the felsic package are identified. Stratigraphic interleaving, however, has made correlation of these units over any significant distance difficult. The sulfide lenses are overlain by a few metres of felsic schists which locally contain manganese-bearing silicates and oxides that serve as a stratigraphic marker. Hangingwall andesitic volcaniclastic rocks are discontinuously preserved, although where present, they consist of regularly bedded mafic volcanic sandstones. The lateral continuity of a manganese-bearing marker and flanking felsic volcaniclastic intervals indicate that locally the volcanic strata form a homoclinal sequence. The Canatuan Au–Ag–Cu–Zn deposit consists of a gossan overlying a massive sulfide lens. The sulfides and gossan are flat lying and hosted within felsic volcanic rocks. The gossan is gold–silver-rich, and was formed by a combination of oxidation and volume collapse of the original sulfide lens. The sulfide minerals present below the current water table, are auriferous massive pyrite with base metal sulfides, with some supergene chalcocite. The transition from gossan to sulfides is very sharp, occurring at the water table. Massive sulfide deposits at Malusok are hosted in the same felsic sequence as Canatuan and they have similar base and precious metal contents. Only limited gossan has been found at Malusok. The bimodal nature of the volcanic rocks at Canatuan, together with their low HFSE contents, near-flat REE patterns and tholeiitic affinities, suggest that they formed in an intra-oceanic arc setting above a depleted mantle source. Mafic and felsic volcanic rocks of similar composition have been recovered from the Tonga-Kermadec and Izu-Bonin-Marianas island-arc systems in the western Pacific. Mafic rocks at Canatuan show no evidence for LILE enrichment that characterizes melts derived from metasomatized mantle under more mature arcs, suggesting that they are the product of a nascent, rather than a mature arc. There is no evidence from the REE, or other incompatible trace elements, that continental crust or evolved arc crust was involved in the generation of the Canatuan-Malusok volcanic rocks. Although it has been proposed that the Zamboanga metamorphic complex comprises microcontinental fragments of Eurasian affinity, our data do not support an evolved crustal setting for the Canatuan-Malusok volcanic rocks, which we suggest were derived from an intra-oceanic arc and subsequently accreted to the eastern Mindanao terrane.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00126-003-0350-7Editorial handling: R.R. Large  相似文献   

18.
Abstract: Two adjacent volcanogenic massive sulfide (VMS) deposits, the Main Malusok and the Malusok Southeast, are delineated within Barangay Tabayo, Siocon, Zamboanga del Norte, Mindanao, Philippines. These deposits comprise massive to semi-massive sulfide lenses representing the down-dip equivalent of oxidized gossans. The massive sulfides have a primary mineral assemblage of pyrite-chalcopyrite-sphalerite with significant amounts of supergene copper in the form of chal-cocite. Owing to structural and metamorphic overprinting combined with intense alteration, primary textures are generally obliterated. Rock types are classified according to dominant mineral assemblages whereas the main lithologic units comprising the Malusok volcanic package are divided based on the position of each unit relative to the mineralized zone. The main lithologic units are designated as the hanging wall, the host, and the footwall sequences. In correlating the stratigraphy of the Main Malusok zone with that of the Malusok Southeast zone, a chlorite/epidote-rich interval located at the base of the hanging wall sequence serves as a distinct stratigraphic marker from which all lithologies are referred to. Comparisons between the stratigraphy of the two areas show that massive to semi-massive sulfide lenses are confined within a single stratigraphic interval representing the favorable horizon for the entire Malusok area. However, differences exist relative to style of mineralization and configuration of the altered interval between the Main Malusok and the Malusok Southeast VMS deposits. Based on characteristics exhibited by each individual deposit, it is inferred that the Main Malusok VMS deposit overlies a feeder zone whereas the Malusok Southeast sulfide lenses represent satellite deposits and transported blocks.  相似文献   

19.
The Draa Sfar mineralization consists of two main stratabound orebodies, Sidi M’Barek and Tazacourt, located north and south of the Tensift River (“Oued Tessift”), respectively. Each orebody is comprised by at least two massive sulfide lenses. The hosting rocks are predominantly black shales, although minor rhyolitic rocks are also present in the footwall to the southern orebody. Shales, rhyolitic volcanic rocks, and massive sulfides are all included into the Sarhlef Series, which is recognized as one of the main stratigraphic units of the Moroccan Variscan Meseta. Hydrothermal activity related with an anomalous thermal gradient, together with a high sedimentation rate in a tectonically driven pull-apart marine basin, favored the accumulation of organic-rich mud in the deepest parts of the basin and the sedimentary environment suitable for massive sulfide deposition and preservation. This took place by replacement of the hosting unlithified wet mud below the sediment–water interface. Geochemical data suggest a sedimentary environment characterized by oxic water column and anoxic sediment pile with the redox boundary below the sediment–water interface. The low oxygen availability within the sediment pile inhibited oxidation and pyritization of pyrrhotite. Biostratigraphic analysis, based on the palynological content of the hosting black shales, restricts the age of the sulfides to the Asbian substage (mid-Mississippian). This age is consistent with earlier geochronological constraints.  相似文献   

20.
Volcanic-associated massive sulphide deposits in the Snow Lake area of Manitoba are related to mineralogically and chemically distinct alteration zones. It is generally accepted that these zones represent crosscutting, subconformable or conformable synvolcanic alteration zones, which were coeval with and have been metamorphosed with the massive sulphides. Metamorphism ranges from upper greenschist facies to middle amphibolite facies. Surface lithogeochemical anomalies led to the discovery of small massive sulphide lenses at a vertical depth of 250 m in the Raindrop Lake area, southwest of Snow Lake, Manitoba. Variations in mineral assemblages of middle amphibolite facies alteration zones and analysis of variations in major and trace element chemistry were used to guide deep drilling at Raindrop Lake. The massive sulphide lenses are stratigraphically underlain by a low angle crosscutting “pipe” and a conformable footwall “apron” alteration.The alteration zones are composed of assemblages of garnet, staurolite and chlorite, and, less significantly, biotite, muscovite and kyanite. They are characterized by loss of Na and Ca, and addition of Fe, Mg, Cu and Zn. Mapping the alteration is aided by the application of the metamorphic AFM phase diagram for the appropriate metamorphic facies. Increasing intensity of alteration can be identified by the first appearance of new mineral phases, which are represented on the AFM diagram. These mineral trends coincide with loss of Na and Ca relative to Al, and increased Mg and Fe. Chemical alteration indices ACNK (molecular proportion Al2O3/(CaO + Na2O + K2O) and AI = 100 × [(MgO + K2O)/(MgO + K2O + CaO + Na2O)] combined with Cu and Zn variation helped to quantify the intensity of alteration, despite being insensitive to Fe.The crosscutting pipe is dominantly Fe enriched, with a Cu-enriched core, Zn enriched margins and widespread Na and Ca depletion. Mineralogically it is identified by garnet, staurolite and chlorite and follows an iron and aluminum enrichment trend on the AFM diagram. The conformable alteration zone is characterized by local strong Mg enrichment, extensive Na and Ca depletion and variable Cu and Zn. Mineralogically it is characterized by the presence of chlorite and kyanite and follows a magnesium and aluminum enrichment trend on the AFM diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号