首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is devoted to the production of 14C by the secondary cosmic radiation in polar ice. The radiocarbon production in the reactions caused by the nuclear-active and muon components is considered. The data on 14C from the Vostok and Taylor Dome Antarctic boreholes are analyzed. The 14C concentration values at depths larger than the firn—ice boundary by a factor of 2—3 can be explained by a deep production of radiocarbon in the reactions caused by the cosmic radiation muon component.  相似文献   

2.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

3.
Present-day data on 14C and 10Be concentration in natural archives have been statistically analyzed. It has been established that it is difficult to extract information about solar activity variations on long (several Myr and longer) and, especially, short (to 30 years) time scales using radiocarbon data. It has been indicated that beryllium series bear reliable information about short-term, secular, and, probably, 1000-year variations in solar activity. Moreover, 10Be concentration in polar ice can also be used to study the internal dynamics of solar activity. It has been concluded that beryllium data are more promising than radiocarbon ones from the viewpoint of solar paleoastrophysics.  相似文献   

4.
The cosmogenic nuclide 10Be was analyzed by using accelerator mass spectrometry on an ice core drilled at the Dome Fuji station, inland Antarctica, for 700–1900 yr CE. The measured concentration of 10Be in the Dome Fuji ice core and the derived 10Be flux show similar fluctuations, with both increasing at known solar-activity minima over the last millennium in agreement with earlier observations of 10Be and 14C. Based on the similar nature of the 10Be flux to the reconstructed 14C production rate patterns, a 10Be–14C correlation age model for the Dome Fuji ice core was successfully constructed. This age model agrees well with the initial version of the tephrochronology of the core. The 10Be-flux record contains information on variability in the amount of cosmic radiation incident on the atmosphere, which is mainly attributable to high-frequency change in solar activity and low-frequency background intensity adjustment of the geomagnetic field. High-resolution 10Be analyses of the Dome Fuji ice cores promise to provide potentially important information on the history of cosmic radiation intensity over the past several hundred thousand years.  相似文献   

5.
《Journal of Atmospheric and Solar》2000,62(17-18):1577-1586
Cosmic rays are considered as a possible link coupling solar activity to atmospheric processes. The most intense types of cosmic ray flux modulations are briefly described as a source of variability in the ion production rate in the atmosphere. The ions may affect atmospheric phenomena through (1) charge-dependent chemical reactions, (2) charge-dependent droplet and ice crystal formation, and (3) as their influence on the current flowing in the global electric circuit. However, the latter two have still to be proved as the causes of correlations between changes in the large-scale meteorological parameters and cosmic ray flux variations.  相似文献   

6.
Information about variations in solar activity and climate on the time intervals from 130 years to four–five last centuries, including results of instrumental measurements (Wolf numbers, actinometry, thermometry) and indirect indicators (ice core acidity, NO 3 ? ion concentration in polar ice, temperature tree-ring reconstructions), has been analyzed for the Northern Hemisphere and its high-latitude part. It has been obtained that the observed relation between secular variations in solar activity and near-Earth temperature resulted from the effect of the corresponding variation in aerosol transparency of the stratosphere on terrestrial climate. It has been also indicated that long-term variations in the aerosol content of the stratosphere can, in turn, be related to secular cycles in atmospheric ionization caused by variations in fluxes of ionizing cosmic particles.  相似文献   

7.
We perform spectral analysis of records of meteorological (temperature, humidity, pressure of the atmosphere) and electrical (strength of quasi-static electric field and electric conductivity of air) parameters observed simultaneously at the Paratunka observatory during the solar events of October 21–31, 2003. Also, we use simultaneous records of X-ray fluxes of solar radiation, galactic cosmic rays, and the horizontal component of the geomagnetic field. We show that the power spectra of the meteorological parameters under fine weather conditions involve oscillations with a period of thermal tidal waves (T ~ 12 and 24 h) caused by the influx of thermal radiation of the Sun. During strong solar flares and geomagnetic storm of October 29–31 with a prevailing component of T ~ 24 h, their spectra involve an additional component of T ~ 48 h (the period of planetary-scale waves). With the development of solar and geomagnetic activities, the power spectra of atmospheric electric conductivity and electric field stress involve components of both thermal tidal and planetary-scale waves, which vary highly by intensity. In the power spectra of galactic cosmic rays accompanying the strong solar flares, components with T ~ 48 h were dominant with the appearance of additional (weaker by intensity) components with T ~ 24 h. The simultaneous amplification of components with T ~ 48 h in the power spectra of electric conductivity and electric field strength provides evidence of the fact that the lower troposphere is mainly ionized by galactic cosmic rays during strong solar flares and geomagnetic storms. The specified oscillation period with T ~ 48 h in their spectra, as well as in the spectra of X-ray radiation of the sun, is apparently caused by the dynamics of solar and geomagnetic activities with this time scale.  相似文献   

8.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

9.
Data on variations in the content of the 14C cosmogenic isotope in tree rings and the Earth’s atmosphere (Δ14C) make it possible to study the behavior of solar activity (SA) in previous centuries and millenniums. The latter is related to the fact that SA temporal variations result in a change in the IMF (Interplanetary Magnetic Field) parameters and, as a consequence, in the galactic cosmic ray (GCR) flux, under the action of which the 14C isotope is produced in the Earth’s atmosphere. This makes it possible to study SA history based on data on the 14C isotope content in tree rings. However, in this case we have several difficulties related to climate change. Climate changes result in carbon redistribution between natural reservoirs, which is reflected in radiocarbon data and results in solar signal distortion. The effect of variations in the global temperature and carbon dioxide concentration on the reconstruction of the heliospheric modulation potential and Wolf numbers from the late 14th century to the early 19th century is considered. It has been shown that the radiocarbon data do not make it possible to conclude that SA during the Maunder minimum was extremely low as compared to SA during the Dalton minimum.  相似文献   

10.
The production rate profiles of21Ne and22Ne as a function of depth in meteoroids due to spallation by solar flare cosmic rays (SCR) and galactic cosmic rays (GCR) are calculated and their dependence on size and composition of meteoroids has been evaluated. The GCR production rate at a given depth increases with size for radii<25cm and then decreases whereas the22Ne21Ne ratio (NeR) generally decreases with size and depth. The calculated GCR production rates and NeR are consistent with the measurements in several Chondrites. A plot of track production rate vs. NeR shows that some chondrites have NeR values smaller than those expected for their sizes. Thes obeervation suggestsat least a two-stage irradiation for such meteorites; the meteoroid exposure as a small body in the interplanetary space must have been preceded by exposure under deep shielding, possibly in its parent body.  相似文献   

11.
Modulation of galactic cosmic rays in cycles 19–23 of solar activity has been determined based on observations of their long-term variations on the ground and in the near-Earth space. The extreme values of long-term variations in cosmic rays, obtained from the data of continuous cosmic radiation monitoring on the ground and in the near-Earth space in the last five solar cycles, have been analyzed. The results are compared with the extrema in the characteristics of solar magnetic fields and the sunspot numbers in these cycles. The similarities and differences in cosmic ray modulation between different cycles are discussed.  相似文献   

12.
Reconstructions of solar activity in the past epochs based on information on the past atmospheric content of the cosmogenic 14C isotope are nowadays actively discussed. The 14C isotope is generated in the atmosphere of the Earth under the influence of cosmic rays, and its concentration in annual tree rings carries information on the past solar activity. However, the concentration of this isotope in annual tree rings may also be influenced by climatic factors. In the present work, the possible correlation between variations in the 14C atmospheric content and in the Earth’s global temperature from the late 14th century to the middle of the 19th century is studied. It is shown that variations in global temperature may produce changes in the 14C atmospheric content and consequently have to be taken into account in reconstructions of the past solar activity.  相似文献   

13.
Radiocarbon: A chronological tool for the recent past   总被引:2,自引:2,他引:0  
The past few hundred years have seen large fluctuations in atmospheric 14C concentration. In part, these have been the result of natural factors, including the climatic changes of the Little Ice Age, and the Spörer and Maunder solar activity minima. In addition, however, changes in human activity since the middle of the 19th century have released 14C-free CO2 to the atmosphere. Moreover, between c. 1955 and c. 1963, atmospheric nuclear weapon testing resulted in a dramatic increase in the concentration of 14C in the atmosphere. This was followed by a significant decrease in atmospheric 14C as restrictions on nuclear weapon testing began to take effect and as rapid exchange occurred between the atmosphere and other carbon reservoirs. The large fluctuations in atmospheric 14C that occurred prior to 1955 mean that a single radiocarbon date may yield an imprecise calibrated age consisting of several possible age ranges. This difficulty may be overcome by obtaining a series of 14C dates from a sequence and either wiggle-matching these dates to a radiocarbon calibration curve or using additional information on dated materials and their surrounding environment to narrow the calibrated age ranges associated with each 14C date. For the period since 1955 (the bomb-pulse period), significant differences in atmospheric 14C levels between consecutive years offer the possibility of dating recent samples with a resolution of from one to a few years. These approaches to dating the recent past are illustrated using examples from peats, lake and salt marsh sediments, tree rings, marine organisms and speleothems.  相似文献   

14.
Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.  相似文献   

15.
Activities of a suite of radioisotopes ranging in half-life from 5.6 days (52Mn) to 3.7 m.y. (53Mn) have been measured in the Dhajala chondrite. The results show that all the radioactivities are close to the expected levels except54Mn and 22Na. Their activities are higher than those based on the interplanetary fluxes at 1 A.U. near the ecliptic, expected immediately before the fall of Dhajala, corresponding to the time of solar minimum. Furthermore, activity ratios of 54Mn/53Mn and 22Na/26Al are higher by 30–50% than expected. The departure from the expected values is discussed in terms of spatial variations of cosmic rays based on the computed orbital parameters of the meteoroid. If the galactic cosmic ray fluxes in the equatorial region (±15°) are assumed to be the same as in the ecliptic plane then these results suggest higher fluxes by 33 ± 7% at heliographic latitudes 15–40°S, during solar minimum.  相似文献   

16.
In this paper it is attempted to evaluate the relative importance of Lyman , EUV, solar X-rays and the secondary cosmic rays in producing ionization in the D-region below 90 km. The resulting ionization is studied in reference to its variations with the solar zenith angle and the solar activity. The currently available absorption and ionization cross-sections and the radiation fluxes have been used. The computed production rates and the currently accepted positive and negative ion reaction schemes are used to compute the positive and negative ion composition. The resulting electron density profiles are compared with the rocket and the theoretical profiles obtained by other workers. The agreement with the rocket results (Mechtly and Smith) appears to be satisfactory whereas the theoretical profiles given by others differ considerably below 70 and 80 km respectively for the solar minimum and maximum conditions.  相似文献   

17.
We study the cosmic ray modulation during different solar cycles and polarity states of the heliosphere. We determine (a) time lag between the cosmic ray intensity and the solar variability, (b) area of the cosmic ray intensity versus solar activity modulation loops and (c) dependence of the cosmic ray intensity on the solar variability, during different solar activity cycles and polarity states of the heliosphere. We find differences during odd and even solar cycles. Differences during positive and negative polarity periods are also found. Consequences and implications of the observed differences during (i) odd and even cycles, and (ii) opposite polarity states (A<0 and A>0) are discussed in the light of the modulation models, including drift effects.  相似文献   

18.
The influence of helio/geophysical factors on the solar energy input to the lower atmosphere has been studied at the network of actinometric stations of Russia in different latitudinal belts. It was found that there are appreciable changes in the half-yearly values of total radiation associated with galactic cosmic ray (GCR) variations in the 11-yr solar cycle, the increase of GCR flux being accompanied by a decrease of the total radiation at higher latitudes and by its increase at lower latitudes. Auroral phenomena and solar flare activity are likely to affect the solar radiation input to the high-latitudinal belt together with GCR variations, the increase of both these factors resulting in the decrease of total radiation. The changes found in the total radiation fluxes in the lower atmosphere seem to be related to the cloud cover variations associated with the solar and geophysical phenomena under study. The variations of the solar radiation input in the 11-yr-cycle amounting to ±4–6% may be an important factor affecting tropospheric dynamics.  相似文献   

19.
The major uncertainty in relating cosmogenic-nuclide exposure ages to ages measured by other dating methods comes from extrapolating nuclide production rates measured at globally scattered calibration sites to the sites of unknown age that are to be dated. This uncertainty can be reduced by locating production rate calibration sites that are similar in location and age to the sites to be dated. We use this strategy to reconcile exposure age and radiocarbon deglaciation chronologies for northeastern North America by compiling 10Be production rate calibration measurements from independently dated late-glacial and early Holocene ice-marginal landforms in this region. 10Be production rates measured at these sites are 6–12% lower than predicted by the commonly accepted global 10Be calibration data set used with any published production rate scaling scheme. In addition, the regional calibration data set shows significantly less internal scatter than the global calibration data set. Thus, this calibration data set can be used to improve both the precision and accuracy of exposure dating of regional late-glacial events. For example, if the global calibration data set is used to calculate exposure ages, the exposure-age deglaciation chronology for central New England is inconsistent with the deglaciation chronology inferred from radiocarbon dating and varve stratigraphy. We show that using the regional data set instead makes the exposure age and radiocarbon chronologies consistent. This increases confidence in correlating exposure ages of ice-marginal landforms in northeastern North America with glacial and climate events dated by other means.  相似文献   

20.
Cosmogenic nuclide exposure dating of glacial clasts is becoming a common and robust method for reconstructing the history of glaciers and ice sheets. In Antarctica, however, many samples exhibit cosmogenic nuclide ‘inheritance’ as a result of sediment recycling and exposure to cosmic radiation during previous ice free periods. In-situ cosmogenic 14C, in combination with longer lived nuclides such as 10Be, can be used to detect inheritance because the relatively short half-life of 14C means that in-situ 14C acquired in exposure during previous interglacials decays away while the sample locality is covered by ice during the subsequent glacial. Measurements of in-situ 14C in clasts from the last deglaciation of the Framnes Mountains in East Antarctica provide deglaciation ages that are concordant with existing 26Al and 10Be ages, suggesting that in this area, the younger population of erratics contain limited inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号