首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Flow over the summit of an isolated hill   总被引:5,自引:0,他引:5  
Observations of the mean flow and turbulence statistics over the summit of an isolated, roughly circular hill, Nyland hill, are presented, Nyland hill rises 70 m above the surrounding terrain and has a base diameter of about 500 m. The summit of the hill is very smooth and allows representative measurements to be made close to the surface. The flow speed 8 m above the summit is increased by a factor of 2 over the upstream speed 8 m above level terrain, and flow separation occurs in the lee of the hill. The mean velocity profile over the summit shows an increase in velocity with height up to about 2 m and then a near constant velocity between 2 and 16 m. The flow perturbation relative to the upstream profile is thus a maximum at about 2 m. The measurements of turbulence structure show how the influence of the hill depends on the length scale of the turbulent eddies involved. Scales greater than the scale of the hill are modified through the flow speed-up whilst scales shorter than the hill suffer complex changes. The short-scale turbulence over the summit is only in local equilibrium in the lowest fraction of a metre. Above this equilibrium region, there is a complex adjustment towards the rapid distortion dynamics which appear to dominate at heights above about 8 m. The detailed results are compared with previous studies and available theories.  相似文献   

2.
A parameterization of the nonhydrostatic pressure was modified and adapted to a nonlinear numerical model of the neutral atmospheric boundary layer. A hydrostatic model and the quasinonhydrostatic version were used to simulate neutral flow over a symmetrical hill of uniform roughness. Mean-flow quantities and some turbulence characteristics of the flow from both models are presented. These results were compared with observations, analytic theory, and other numerical models.The quasi-nonhydrostatic method produced qualitative features commonly observed in such flows that the hydrostatic model could not simulate. For instance, the observed velocity reduction at the hill base and the speedup at the summit both were simulated by the quasi-nonhydrostatic model. However, computation of vertical velocities from the incompressible continuity equation is inadequate above regions of recirculation and presents a limitation to the method.Journal Paper No. J-12741 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2779.  相似文献   

3.
A comparison is made of numerical and experimental results for flow over two-dimensional hills in both neutral and stably stratified flow. The numerical simulations are carried out using a range of one-and-a-half order and second-order closure schemes. The performance of the various turbulence schemes in predicting both the mean and turbulent quantities over the hill is assessed by comparing the results with new wind-tunnel measurements. The wind-tunnel experiments include both neutral and stably stratified flow over two different hills with different slopes, one of which is steep enough to induce flow separation. The dataset includes measurements of the mean and turbulent parts of the flow using laser Doppler anemometry. Pressure measurements are also made across the surface of the hill. These features make the dataset an excellent test of the model performance. In general second-order turbulence schemes provide the best agreement with the experimental data, however, they can be numerically unstable for steep hills. Some modifications can be made to the standard one-and-a-half order closure scheme, which results in improved performance at a fraction of the computation cost of the second-order schemes.  相似文献   

4.
A wind tunnel study of turbulent flow over model hills   总被引:1,自引:1,他引:1  
Detailed wind tunnel measurements have been made of mean flow and turbulence over a two-dimensional ridge and a circular hill, both having cosine-squared cross-section and maximum slope about 15 °. The measurements were made in an artificially thickened neutrally stratified boundary layer, and have been compared with results from linear models and rapid distortion theory as appropriate.Our study shows that linear theory gives generally good predictions of the mean flow on the upwind side of the hills, and especially of the flow speedup at the hill top, but that the turbulence is less well predicted. In particular, the measurements show a major increase in the vertical component of turbulence and in the shear stress on the upwind slope of both the two- and three-dimensional hills which is not predicted by either equilibrium or isotropic rapid-distortion theories, although this may be partly due to the effect of streamline curvature. Rapid-distortion theory is successful only in describing the streamwise component of turbulence in the outer region of the flow, while in the upper part of the inner region of the flow, the turbulence measurements show disagreement with both the equilibrium and the rapid-distortion theories. Our experiments also confirm that the equilibrium region is a very thin layer close to the surface, while above this region and below the outer region, there is a transitional region where all terms in the stress equation are important.The measurements over the three-dimensional hill suggest that the mean flow and turbulence are broadly similar to those over the two-dimensional ridge, but with reduced perturbation amplitudes. The major differences between the two cases are found on the upwind slope and in the wake where, respectively, horizontal divergence and convergence of the three-dimensional flow are most pronounced.  相似文献   

5.
Measurements are presented of mean windspeed and turbulence over Great Dun Fell, which is rather larger than hills investigated in the past, viz., 847 m high, which is comparable to the boundary-layer depth. The Fell is well suited for study, being covered by rough grass with no trees and few other obstructions. It was found that the speed-up of the wind is dominated by the elevated stratification and generally agrees closely with the predictions of the model of Carruthers and Choularton (1982) except when the flow is blocked. On the hill summit, the turbulence is approximately in local equilibrium in at least the lowest 10 m and the turbulence measurements are similar to those obtained within the inner layer at other sites. The transverse and longitudinal components show spectral lags at wavelengths greater than 30 m. This suggests an inner-layer depth of about 1/3 that predicted by Jackson and Hunt (1975). At reduced frequencies (>0.1), a recovery in spectral energy is observed due to gravity wave activity. A large variation in the streamline tilt at the summit is observed depending on whether the airflow regime is supercritical or subcritical.  相似文献   

6.
Non-linear model simulations of atmospheric boundary-layer flow over the hill called Blashaval have been compared with observations and linear model predictions. Previous studies have shown that linear models can give good predictions of wind speed at the summit and on the upwind slopes of Blashaval. The non-linear model provided wind speed predictions of similar accuracy when compared with the mean observed values at these locations.The published experimental data showed that on the lee-slope the wind speeds at 8m were reduced to approximately 10% of their upstream value at the same height. This was associated with an 180° change in wind direction compared with the upstream flow, suggesting that flow separation had occurred. The non-linear model predictions of lee-slope wind speed, when used with high-resolution topography data, were significantly better than linear model predictions. However, the non-linear model predicted lee-slope wind speeds that were still stronger than observed. The non-linear model simulated flow separation more readily with a 1 1/2-order turbulence closure than with a first-order, mixing-length closure. The configuration of the non-linear model that gave best agreement with observations predicted an 8m lee-slope wind speed that was around 50% of the upstream value.  相似文献   

7.
本文采用二阶矩湍流闭合方案,分别就非静力和准静力两种条件建立PBL数值模式,并模拟了二维山脊流场的结构,计算了二维山体对气流平均场和湍流场的影响。计算结果表明,无论是平均场还是湍流场,采用准静力假设都会造成模拟结果的较大偏差,且对平均场的影响比对湍流场的影响更为显著。两种模式计算结果的差别还随地形坡度和背景风增大而增大。  相似文献   

8.
A numerical model is developed for two-dimensional turbulent boundary-layer flow above gentle topography — defined as not giving rise to mean flow separation. Although the model is formulated in a framework of mixing length and turbulent energy equation models for the surface layer of the atmospheric boundary layer, it could be modified to include higher-order closure hypotheses and/or extended to model gentle topography for the planetary boundary layer or on the sea bed. Results are presented for flow above a specific shape of hill and the effects of surface roughness and hill height are investigated.  相似文献   

9.
Between 1975 and 1977, the Centre Scientifique et Technique du Bâtiment (CSTB) carried out a study of the overspeed effect over a hill in the surface boundary layer. The hill in question was situated in open country and had a drop of about 100 m for an average slope of 8%. The experimental equipment consisted of three 25 m high masts placed along the upwind slope of the hill. Each mast was equipped with four Gill Propeller anemometers. The data set analyzed consisted of 65 recordings of strong winds which had an average velocity greater than 6 m s-1.Near the ground, local topographic effects and inhomogeneous roughness along the slope have the same influence on the overspeed effect as the mean slope of the hill. The overspeed is proportional to the upwind slope, but on the other hand, the turbulence structure does not seem to be disturbed by the hill.  相似文献   

10.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

11.
12.
A large-eddy simulation model with rotated coordinates and an open boundary is used to simulate the characteristics of katabatic flows over simple terrain. Experiments examine the effects of cross winds on the development of the slope-flow boundary layer for a steep (20°) slope and the role of drainage winds in preventing turbulence collapse on a gentle slope (1°). For the steep flow cases, comparisons between model average boundary-layer velocity, temperature deficit, and turbulence kinetic energy budget terms and tower observations show reasonable agreement. Results for different cross slope winds show that as the cross slope winds increase, the slope flow deepens faster and behaves more like a weakly stratified, sheared boundary layer. Analysis of the momentum budget shows that near the surface the flow is maintained by a balance between downslope buoyancy forcing and vertical turbulence flux from surface drag. Above the downslope jet, the turbulence vertical momentum flux reverses sign and acceleration of the flow by buoyancy is controlled by horizontal advection of slower moving ambient air. The turbulence budget is dominated by a balance between shear production and eddy dissipation, however, buoyancy and pressure transport both are significant in reducing the strength of turbulence above the jet. Results from the gentle slope case show that even a slight terrain variation can lead to significant drainage winds. Comparison of the gentle slope case with a flat terrain simulation indicates that drainage winds can effectively prevent the formation of very stable boundary layers, at least near the top of sloping terrain.  相似文献   

13.
Summary Surface wind patterns and air flows within the planetary boundary layer over a large three-dimensional hill of moderate slope are grouped according to Froude number classes. An evolution of flow patterns is shown to occur as the Froude number increases.Separation of the surface flow begins at the base of the lee side of the mountain near the centerline, moving upward on the lee slope as the Froude number increases. Recirculating eddies follow the separation of the lee flow. Eventually the separation line moves forward to the windward side as the Froude number becomes very large. The recirculating eddy becomes unsteady, with indication of an intermittent counterrolating eddy near the lee surface in neutral flow. The lee-side turbulence is enhanced with respect to the windward side due to the large eddies in high Froude number regimes.The concept of a critical height for the approach flow is generally supported. The integral form of the Froude number does not appear to be superior to a bulk Froude calculation in representing a particular airflow pattern.With 6 FiguresDeceased.  相似文献   

14.
The Askervein Hill Project: Wind-tunnel simulations at three length scales   总被引:1,自引:1,他引:1  
Wind-tunnel simulations of neutrally-stable atmospheric boundary-layer flow over an isolated, low hill (Askervein) have been carried out at three different length scales in two wind-tunnel facilities. The objectives of these simulations were to assess the reliability with which changes in mean wind and turbulence structure induced by the prototype hill on boundary-layer flow can be reproduced in the wind tunnel, and to determine the relative impact of certain modelling approaches (surface roughness, model scale, measurement techniques, etc.) on the quality of the simulations. The wind-tunnel results are compared with each other and with full-scale data and are shown in general to model the prototype flow very well. The effects of relaxing the criterion of aerodynamic roughness of the model surface were limited to certain regions in the lee of the hill and were linked to separation phenomena.  相似文献   

15.
The neutrally stratified flow over the Askervein Hill was simulatedusing a terrain-following coordinatesystem and a two-equation(k - ) turbulence model. Calculations were performed on awide range of numerical grids to assess, among other things, theimportance of spatial discretization and the limitations of theturbulence model. Our results showed that a relatively coarse gridwas enough to resolve the flow in the upstream region of the hill;at the hilltop, 10 m above the ground, the speed-up was 10% lessthan the experimental value. The flow's most prominent feature wasa recirculating region in the lee of the hill, which determinedthe main characteristics of the whole downstream flow. This regionhad an intermittent nature and could be fully captured only in the caseof a time-dependent formulation and a third-order discretization ofthe advective terms. The reduction of the characteristic roughnessnear the top of the hill was also taken into account, showing theimportance of this parameter, particularly in the flow close to theground at the summit and in the downstream side of the hill.Calculations involving an enlarged area around the Askervein Hillshowed that the presence of the nearby topography affected the flowneither at the top nor downstream of the Askervein Hill.  相似文献   

16.
We study the vorticity field induced by flow around surface mounted obstacles, focussing on the streamwise vorticity. A combination of analytical and numerical model results indicates that the mechanisms for the generation of the mean flow vorticity, as well as its form and magnitude, are not significantly influenced by turbulence, at least for a first-order turbulence closure. This result is in qualitative agreement with suggestions of previous studies. The numerical model is used to simulate flow around an asymmetric hill and, in terms of the shape and positioning of the trailing vortex, good agreement is found between the simulations and observations. However, the strength of the vortex appears to be significantly underestimated by the numerical model. The influence of the slope of the hill and of the angle of incidence of the mean wind on the trailing vorticity is also investigated. Finally, it is found that the occurrence of a dominant trailing vortex, at least one of the strength predicted by the numerical model, does not have a significant impact on the momentum budget of the downstream boundary layer.  相似文献   

17.
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier–Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.  相似文献   

18.
Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill   总被引:1,自引:1,他引:0  
Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, Water Resour Res 2006, doi:). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.  相似文献   

19.
Boundary-layer wind-tunnel flow is measured over isolated ridges of varyingsteepness and roughness. The steepness/roughness parameter space is chosento produce flows that range from fully attached to strongly separated. Measurementsshow that maximum speedup at the hill crest is significantly lower than predictedby linear theory and that recovery in the lee of the hill is much slower for stronglyseparated flow over steep terrain. The measurements also show that behaviour ofthe mean and turbulent components of the flow on the downwind side of the ridgeis fundamentally different between separated and non-separated flows. This suggeststhe dominance of much increased turbulence time and length scales in the lee of thehill in association with a production mechanism that scales with the hill length ratherthan the proximity to the surface as on the windward side of the hill crest.  相似文献   

20.
Given incident logarithmic profiles of wind and pollutant concentration above a rough, absorbing surface, the three-dimensional distribution of pollutant concentration over a hill of gentle slope is determined from a linearized model. The model is applied in neutrally stratified flow, without chemistry, and is integrated using spectral methods in the horizontal and a finite-difference scheme in the vertical. This approach allows for flexibility in choosing a closure scheme and a variety of surface boundary conditions. This was not possible in the analytic approach of Padro (1987) who added pollutant concentration and flux to the MS3DJH/1 model of Walmsley et al. (1980). The present model requires as input the turbulent kinetic energy, E, dissipation, , and the perturbation vertical velocity, w, from the three-dimensional boundary-layer flow model of Beljaars et al. (1987), hereinafter referred to as MSFD, The latter model also supplies wind velocity perturbations at the upper boundary, as input to upper boundary conditions on the pollutant flux perturbations.The present study describes applications of the model to idealized terrain features: isolated two- and three-dimensional hills and ridges and an infinite series of ridges. (Application to real terrain, however, presents no difficulties.) Comparisons were made with different (though uniform) surface roughnesses. Tests were performed to examine the effect of upstream terrain features in the periodic domain and to illustrate the importance of the vertical resolution of the output for interpreting results from the sinusoidal terrain case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号