首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
据《我们变化的星球——美国1996财政年度全球变化研究计划》,介绍了美国1996财政年度全球变化研究计划的科学目标和研究内容,主要包括季节至年际的气候波动及相关事件,未来几十年的气候变化,平流层臭氧耗减与UV辐射的增强,土地覆盖、陆地与海洋生态系统的变化,全球变化研究的横断性问题及国际合作等方面。  相似文献   

2.
全球变化的集成研究   总被引:19,自引:4,他引:19  
在论述全球变化集成研究的理论基础——复杂性科学的基础上,概述了国际全球变化集成研究的含义、现状与方向,讨论了中国全球变化集成研究的现状,并展望了中国全球变化集成研究的切入研究命题。  相似文献   

3.
渤海沿岸广泛分布有沼泽化、盐渍化和沙漠化现象。本区在20000—12000aB.P.为干旱期,沙漠化呈正向过程;12000—2500aB.P.为暖湿期,沼泽化呈正向过程;2500aB.P.至今为向干冷转化期,湖沼迅速消失,盐渍化由发展转向减轻—脱盐,沙漠化则日趋严重。特别是近100年来其趋势更为明显和严重,成为本区环境恶化的主要方面。这种变化主要受气候和地质环境变化所控制。作者根据地质历史时期三化现象的演替规律,预测演化趋势,并研究其与全球变化的关系。  相似文献   

4.
浦庆余 《第四纪研究》1991,11(3):245-259
末次冰期我国西部的冰川长度比现代冰川长2—5倍,雪线低300—1080m;东部多年冻土区南界在33°20′—33°40′N,青藏高原多年冻土区东北部的下界在海拔2200—2600m 处;黄、东海海平面下降130—155m;经向环流加强,北方冷空气增强。末次冰期以后冰川阶段性退缩,多年冻土区阶段性缩小,海平面间歇性上升;8000—6000aB.P.为高温期,出现2—5m 高海面,5600—5000aB.P.气温短暂下降,海平面突然回落,冰川有所前进;3000aB.P.的新冰期和15—19世纪的小冰期,气候、冰川和海平面都有显著变化。哺乳动物的绝灭和迁徙是自然和人为双重影响的结果。这些变化都是全球变化的表现。  相似文献   

5.
张文斌 《物探与化探》2004,28(4):283-286
介绍了在新疆东天山地区进行地质填图——区分岩性、划分岩浆岩和构造等方面的工作成果。上述成果是在大比例尺高精度航空物探综合测量的基础上,通过综合研究和野外地质—物化探综合调查取得的。  相似文献   

6.
土地利用变化与陆地-海洋的相互作用   总被引:4,自引:0,他引:4  
评述了土地利用变化通过对河流的水文学、营养元素、悬浮物、沉积物、水生生物的影响,进而对海洋产生的重要影响,土地利用变化是陆地—海洋相互作用发生变化的原因之一。介绍了当前北海沿岸的英国及其它一些国家实施的陆地和海洋相互作用计划的研究内容和进展,提出今后应加强海岸带土地利用/土地覆盖变化研究与陆地—海洋相互作用研究的结合,提高对全球变化的认识。  相似文献   

7.
晚冰期Younger Drayas环境灾变   总被引:3,自引:0,他引:3  
新仙女木事件(Younger Dryas Event)是过去15000年里全球最为严重的环境灾变事件。它使得冰期气候急剧回返,陆地自然环境严重恶化,并且遣成更新世末期的生物界大绝灭。该事件在深海沉积、大陆冰盖和湖泊沉积物剖面都有多种十分显著的记录。对其成因和机制的研究,将会深入揭示太阳辐射—大气—海洋气—冰盖气—陆地气—生物圈相互作用系统中的非线性反馈现象,为探索人类面临的全球变化问题提供借鉴。  相似文献   

8.
晚前寒武纪扬子克拉通及其周缘保存了一套比较完整的白云岩地层(灯影组)。扬子北缘(南秦岭) 地区的灯影组白 云岩与典型灯影组白云岩在成岩组合和沉积序列有较大差别,有待进一步研究。该研究在野外剖面实测、镜下鉴定基础 上,运用阴极发光和X射线衍射有序度分析对扬子北缘(南秦岭) 淅川地区灯影组白云岩进行了岩石学分类及成因机制研 究。研究区灯影组白云岩类型主要为泥—粉晶他形白云岩、细晶自形—半自形白云岩、以中—粗晶白云石为主的细—粗晶 半自形—他形白云岩、鞍形白云岩和岩溶角砾白云岩。其中泥—粉晶他形白云石为准同生阶段蒸发海水白云石化作用产 物;细晶自形—半自形白云石形成于早成岩浅埋藏阶段,成岩过程与蒸发海水回流渗透白云石化作用有关;细—粗晶半自 形—他形白云石和鞍形白云石属晚成岩期中—深埋藏环境下由碳酸盐岩矿物经过热液白云石化或重结晶作用所形成;岩溶 角砾白云岩是通过白云岩层的溶蚀—垮塌和砾间胶结作用形成。因此,由于相对海平面升降、上覆地层沉积厚度增加引起 的成岩环境变化以及后期流体的改造作用促使了研究区不同类型白云岩的发育。  相似文献   

9.
    当前,人类面临着全球性的一系列重大问题,要有效地解决这些问题,必须把地球作为统一的有机整体,研究组成地球系统的各部分之间的动态相互作用,即研究相互关联的流体子系统、生物地球化学循环子系统和固体地球子系统之间的动态相互作用。同时,把地球系统作为一个开放系统,从而把太阳输入作为控制地球演变的外源。
    运用系统思维的方式,把地球作为一个系统来进行研究,从而聚结成为一门崭新的地球系统科学——全球性多学科创新的前沿科学。这种研究方式是一种观念上的基本转变,即运用系统科学认识论和方法论,研究地球系统的整体行为、全球变化的性质和原因,因而地球系统科学就最有利于科学地理解和解决人类共同面临的全球性的重大问题。  相似文献   

10.
深水重力流沉积领域是当前全球油气勘探与研究的热点,陆相盆地深水重力流沉积研究在我国已有50年历程,大致可以分为3个阶段,即浊流理论探索与发展阶段(1970—1980年)、浊流理论工业化应用阶段(1990—2000年)和砂质碎屑流研究阶段(2010年以后)。近10年来,随着国际深水沉积理论的发展与我国油气勘探技术的进步,湖盆深水沉积研究工作进展迅速,涌现出了大量的新成果、新认识,主要包括以下4个方面: 1)湖盆中央深水区至少存在浊流、异重流、砂质碎屑流及底流4种类型的重力流与牵引流沉积;2)湖盆中不同类型的流体在搬运与沉积过程中存在互相转化,形成混合事件层(Hybrid Event Bed);3)建立了湖相砂质碎屑流搬运—沉积过程的鉴别标志—— “泥包砾”结构(Mud-coated intraclasts);4)地震沉积学理论与技术方法在湖相重力流内部沉积单元解剖、湖盆深水沉积模式建立等方面取得巨大成功。展望未来,为适应油气工业勘探开发需求,湖盆深水沉积研究发展趋势主要有5个方面: 1)深水砂体成因类型划分、搬运—沉积过程及沉积模式的建立与完善;2)深水泥页岩(细粒沉积)成因机理、类型划分及其油气意义研究;3)深水沉积“源—汇”系统与地震响应及评价预测研究;4)深水沉积搬运—沉积过程实验模拟研究;5)新的深水沉积理论体系建立及其在油气勘探开发中的应用。  相似文献   

11.
Several abrupt climate events during the Holocene, including the widely documented oscillation at 8.2 thousand years before present (ka), are attributed to changes in the North Atlantic thermohaline circulation. Additional mechanisms, such as interactions between atmospheric circulation, ice-sheet dynamics, and the influence of solar irradiance, also have been proposed to explain abrupt climatic events, but evidence remains elusive. This study presents evidence from multi-proxy analyses on the Holocene sediments of Eleanor Lake, interior British Columbia. Climatic inferences from our decadal-resolution record of biogenic silica (BSi) abundance are supported by changes in diatom and pollen assemblages from the same core and correlations with existing regional climate records. The BSi record reveals abrupt and persistent climatic shifts at 10.2, 9.3, and 8.5 ka, the latter two of which are coeval with major collapses of the Laurentide Ice Sheet. The record also reveals a short-term cooling at 8.2 ka that is distinct from the 8.5 ka event and similar in magnitude to several other late-Holocene coolings. BSi is correlated with solar-irradiance indices (r = 0.43–0.61), but the correlation is opposite in sign to that expected from direct solar forcing and weakens after 8 ka. Possible mechanisms causing the abrupt and persistent climate changes of the early Holocene include 1) sudden losses of ice and proglacial lake extent, causing a shift in the meridional structure of atmospheric circulation, 2) a possible link between solar minima and El Niño-like conditions that are correlated with warm spring temperature in interior British Columbia, and 3) the influence of solar irradiance variability on the position of the polar jet, possibly via effects on the strength of the glacial anticyclone.  相似文献   

12.
利用地球系统模式CESM过去2 000年气候模拟试验结果,探讨了在百年尺度上东亚夏季风降水的时空变化特征及其成因,对于认识百年尺度气候变化规律、区分外强迫因子对东亚季风的影响有着重要的科学意义。研究表明:1东亚夏季风降水与温度基本同相变化,降水存在准100年、准150年和准200年周期。2降水标准化EOF第一模态为由北向南"负—正—负—正"的条带状空间分布,而EOF第二模态基本为全区一致的分布型态。3东亚夏季风降水准100年周期主要受太阳辐射、火山活动和气候系统内部变率的共同影响;准150年周期主要受太阳辐射的影响;准200年周期主要受太阳辐射和火山活动的影响。东亚夏季风降水在温带地区主要受温室气体和土地利用/覆盖的影响;在副热带地区主要受太阳辐射和火山活动的影响;在热带地区主要受太阳辐射、火山活动和气候系统内部变率的影响。  相似文献   

13.
Widespread empirical evidence suggests that extraterrestrial forcing influences the Earth’s climate, but how this could occur remains unclear. Here we describe a new approach to this problem that unifies orbital, solar and lunar forcing based on their common control of the Earth’s latitudinal insolation gradient (LIG). The LIG influences the climate system through differential solar heating between the tropics and the poles that gives rise to the latitudinal temperature gradient (LTG), which drives the Earth’s atmospheric and (wind driven) ocean circulation. We use spectral analysis of recent changes in the Earth’s LTG to support earlier work on orbital timescales (Davis and Brewer, 2009) that suggests the climate system may be unusually sensitive to changes in the LIG. Identification of LIG forcing of the LTG is possible because the LIG varies according to seasonally specific periodicities based on obliquity in summer (41 kyr orbital and 18.6 yr lunar cycle), and precession (21 kyr orbital cycle) and total solar irradiance (11 yr solar cycle) in winter. We analyse changes in the Northern Hemisphere LTG over the last 120 years and find significant (99%) peaks in spectral frequencies corresponding to 11 years in winter and 18.6 years in summer, consistent with LIG forcing. The cross-seasonal and multi-frequency nature of the LIG signal, and the diffuse effect of the LTG driver on the climate system may account for the complexity of the response to extraterrestrial forcing as seen throughout the climatic record. This hypersensitivity of the LTG to the LIG appears poorly reproduced in climate models, but would be consistent with the controversial theory that the LTG is finely balanced to maximise entropy.  相似文献   

14.
《Quaternary Science Reviews》2003,22(5-7):691-701
Oxygen and carbon isotopic variations in the upper section of a stalagmite (SF-1) from Buddha Cave (33°40′N 109°05′E) dated by 230Th/234U 210Pb and lamination counting to a time resolution as fine as 1–3 years have recorded climate changes in central China for the last 1270 years. The changes include those corresponding to the Medieval Warm Period Little Ice Age and 20th-century warming lending support to the global extent of these events. The isotopic records also show cycles of 33, 22, 11, 9.6, and 7.2 years. The 33-year cycle could well represent the ∼35-year periodicity of climate fluctuations previously recognized in China and Europe. Cycles of 22, 11, and 9.6 years have often been associated with the Sunspot or lunar-orbit variations. The 7.2-year cycle was recently identified also in tree-ring records from an area close to Buddha Cave. These cycles suggest that external forcing (e.g. solar irradiance) may affect the summer monsoon over eastern China. The general consistency between the climate characteristics inferred from the stable isotope records of SF-1 and those from other proxy records underscores the value of stalagmites as recorders of paleoclimate.  相似文献   

15.
In this study, a ca. 4000 cal. yr ancient lacustrine (or wetland) sediment record at the southern margin of Tarim Basin is used to reconstruct the history of climate change. Six radiocarbon dates on organic matter were obtained. δ18O and δ13C of carbonate, pollen and sediment particle size were analysed for climate proxies. The proxies indicate that a drier climate prevailed in the area before ca. 1010 BC and during period 1010 BC–AD 500 climate then changed rapidly and continuously from dry to moist, but after about AD 500 climate generally shows dry condition. Several centennial‐scale climatic events were revealed, with the wettest spell during AD 450–550, and a relatively wetter interval between AD 930–1030. Pollen results show that regional climate may influence human agricultural activities. Spectral analysis of mean grain size (MGS) proxy reveals statistically pronounced cyclic signals, such as ca. 200 yr, ca. 120 yr, ca. 90 yr, ca. 45 yr and ca. 33 or 30 yr, which may be associated with solar activities, implying that solar variability plays an important role in the decadal‐ and centennial‐scale climate variations in the study area. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The planet's radiation budget includes practically all energy exchange between the Sun, the Earth, and space, and so is a fundamental factor of climate. The terms of this budget, observable only from space, are determined from sampled direct measurements of the solar and terrestrial radiation fields. On the contrary, however, it should be remembered that energy exchange between the Earth's surface and its atmosphere involves not only radiative but also non-radiative energy fluxes. Nevertheless, only observations from space can provide satisfactory global coverage of the different energy fluxes that determine climate at the Earth's surface, by way of indirect retrievals of radiative fluxes at the surface and at different heights in the atmosphere. We describe the methods, applied to measurements made with a variety of instruments on board different artificial satellites, that have led to our present knowledge of the Earth's radiation budget (ERB) at the “top of the atmosphere”: global annual mean values of the ERB terms, its annual cycle, its geographical structure, and its variations. We know that solar irradiance, averaged over the globe and the year, varies by only 0.1% with the solar activity cycle; we also know that planetary (Bond) albedo is close to 0.3, that the global annual mean emission of thermal infrared radiation to space is close to 240 Wm?2, and that these terms exhibit a weak but well determined annual cycle. We also know that cloud cover plays a major role in the radiation budget, both in the “shortwave” domain (global SW “cloud radiative forcing” –50 Wm?2) and in the “longwave” domain (+20 Wm?2), thus a net forcing of –30 Wm?2. Successive satellite missions give consistent results for the shape, the phase, and the amplitude of the annual cycle of the planetary radiation balance. However, the different estimates of its annual mean absolute value remain uncertain, not differing significantly from zero, although generally excessively positive. We also rapidly review the methods used to determine the surface radiation budget as well as that of the atmosphere. For the planetary (TOA) radiation budget, we examine to what extent interannual variations and interdecadal trends have been or could be detected. We conclude with a review of projects under way. We also discuss priorities for future efforts, considering in particular, on the one hand (Ringer, 1997), the need to better quantify the factors that govern climate sensitivity to modifications of the atmosphere's radiative properties, on the other hand, the importance of monitoring the evolution of the present disequilibrium situation.  相似文献   

17.
This work presents two novel climate‐related time series for the northwest of Portugal. The first is an AD 1626–1820 triennial‐resolved wine production series, based on the Benedictine accounts from six monasteries of the Entre‐Douro‐e‐Minho (EDM) region. The second, an AD 1654–2010 benthic foraminiferal record from the Caminha salt marsh, located in the lower estuary of the Minho River. The series were analysed together for the common period to outline how both palaeoclimatic proxies respond to the most likely natural environmental drivers of temporal variability, solar forcing included. Singular spectral analysis revealed a common significant multidecadal periodicity agreeing with recognized long‐term changes in solar activity, i.e. the Lower Gleissberg cycle (50–80 years). The application of wavelet analysis allowed the detection of high coherence at this time scale (centred at c. 64 years) between marsh foraminifera and both total solar irradiance and the North Atlantic Oscillation index. This relationship persists throughout the c. AD 1730–1875 period. The continuous wavelet transform results for wine production were inconclusive. As the time‐span analysed is recognized as one of high socio‐economic and political distress, the main human‐driven impacts on wine production, particularly in the two periods of greatly reduced solar activity – the Maunder and Dalton Minima – are reviewed in the light of the available historical records. In addition to a documented climate‐related agricultural crisis in Portugal, damage and losses to wine production may have been triggered by several local and international conflicts in which the country was involved. But to what extent the two influences contributed to the wine production variations observed in the EDM region during both periods remains an open question.  相似文献   

18.
The regional climate correlation within the Northern Hemisphere in the cold/dry mid-Younger Dryas event (YD) remains elusive. A key to unraveling this issue is sufficient knowledge of the detailed climate variability at the low latitudes. Here we present a high-resolution (3-yr) δ18O record of an annually laminated stalagmite from central China that reveals a detailed Asian monsoon (AM) history from 13.36 to 10.99 ka. The YD in this record is expressed as three phases, characterized by gradual onsets but rapid ends. During the mid-YD, the AM variability exhibited an increasing trend superimposed by three centennial oscillations, well-correlated to changes in Greenland temperatures. These warming/wetting fluctuations show a periodicity of ~ 200 yr, generally in agreement with centennial changes in cosmogenic nuclides indicated by the 10Be flux from the Greenland ice. This relationship implies that centennial-scale climate changes during the mid-YD are probably caused by solar output and rapidly transported over broad regions through atmosphere reorganization.  相似文献   

19.
Changes in solar constant over an 11 yr cycle suggest a certain, but limited, degree of solar forcing of climate. The high-resolution climate (oxygen isotope) record of the Greenland GISP2 (Greenland Ice Sheet Project 2) ice core has been analyzed for solar (and volcanic) influences. The atmospheric14C record is used as a proxy of solar change and compared to the oxygen isotope profile in the GISP2 ice core. An annual oxygen isotope profile is derived from centimeter-scale isotope measurements available for the post-A.D. 818 interval. Associated extreme summer and winter isotope ratios were found to yield similar climate information over the last millennium. The detailed record of volcanic aerosols, converted to optical depth and volcanic explosivity change, was also compared to the isotope record and the oxygen isotope response calibrated to short-term volcanic influences on climate. This calibration shows that century-scale volcanic modulation of the GISP2 oxygen isotope record can be neglected in our analysis of solar forcing. The timing, estimated order of temperature change, and phase lag of several maxima in14C and minima in18O are suggestive of a solar component to the forcing of Greenland climate over the current millennium. The fractional climate response of the cold interval associated with the Maunder sunspot minimum (and14C maximum), as well as the Medieval Warm Period and Little Ice Age temperature trend of the past millennium, are compatible with solar climate forcing, with an order of magnitude of solar constant change of 0.3%. Even though solar forcing of climate for the current millennium is a reasonable hypothesis, for the rest of the Holocene the century-scale events are more frequent in the oxygen isotope record than in the14C record and a significant correlation is absent. For this interval, oceanic/atmospheric circulation forcing of climate may dominate. Solar forcing during the surprisingly strong 1470 yr climate cycle of the 11,000–75,000 yr B.P. interval is rather hypothetical.  相似文献   

20.
From temporal variation in δ18O in Globigerinoides ruber and G. sacculifer and geochemical indices of weathering/erosion (chemical index of alteration, Al and Ti), we infer rapid southwest monsoon (SWM) deterioration with dwindling fluvial and detrital fluxes at ca. 450–650, 1000 and 1800–2200 cal. a BP during the late Holocene. We have evaluated the role of solar influx (reconstructed) and high‐latitude climate variability (archived in GRIP and GISP‐2 cores) on SWM precipitation. Broadly, our δ18O climate reconstruction is concordant with GRIP and GISP‐2, and supports a teleconnection through atmospheric connection between the SWM and the North Atlantic climate – albeit temporal extents of the Little Ice Age and Medieval Warm Period from high latitude are not entirely coeval. Moreover, there is a humid climate and enhanced precipitation during the terminal stages of the Little Ice Age. The medieval warming (ca. AD 800–1300) is not synchronous either, and is punctuated by an arid event centred at 1000 a BP. Although the delineation of the specific influence of solar influx on SWM precipitation is elusive, we surmise that SWM precipitation is a complex phenomenon and local orography along southwestern India may have a role on the entrapment of moisture from the southwest trade winds, when these hit land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号