首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In subsurface flow modeling, compositional simulation is often required to model complex recovery processes, such as gas/CO 2 injection. However, compositional simulation on fine-scale geological models is still computationally expensive and even prohibitive. Most existing upscaling techniques focus on black-oil models. In this paper, we present a general framework to upscale two-phase multicomponent flow in compositional simulation. Unlike previous studies, our approach explicitly considers the upscaling of flow and thermodynamics. In the flow part, we introduce a new set of upscaled flow functions that account for the effects of compressibility. This is often ignored in the upscaling of black-oil models. In the upscaling of thermodynamics, we show that the oil and gas phases within a coarse block are not at chemical equilibrium. This non-equilibrium behavior is modeled by upscaled thermodynamic functions, which measure the difference between component fugacities among the oil and gas phases. We apply the approach to various gas injection problems with different compositional features, permeability heterogeneity, and coarsening ratios. It is shown that the proposed method accurately reproduces the averaged fine-scale solutions, such as component overall compositions, gas saturation, and density solutions in the compositional flow.  相似文献   

2.
Distance-based stochastic techniques have recently emerged in the context of ensemble modeling, in particular for history matching, model selection and uncertainty quantification. Starting with an initial ensemble of realizations, a distance between any two models is defined. This distance is defined such that the objective of the study is incorporated into the geological modeling process, thereby potentially enhancing the efficacy of the overall workflow. If the intent is to create new models that are constrained to dynamic data (history matching), the calculation of the distance requires flow simulation for each model in the initial ensemble. This can be very time consuming, especially for high-resolution models. In this paper, we present a multi-resolution framework for ensemble modeling. A distance-based procedure is employed, with emphasis on the rapid construction of multiple models that have improved dynamic data conditioning. Our intent is to construct new high-resolution models constrained to dynamic data, while performing most of the flow simulations only on upscaled models. An error modeling procedure is introduced into the distance calculations to account for potential errors in the upscaling. Based on a few fine-scale flow simulations, the upscaling error is estimated for each model using a clustering technique. We demonstrate the efficiency of the method on two examples, one where the upscaling error is small, and another where the upscaling error is significant. Results show that the error modeling procedure can accurately capture the error in upscaling, and can thus reproduce the fine-scale flow behavior from coarse-scale simulations with sufficient accuracy (in terms of uncertainty predictions). As a consequence, an ensemble of high-resolution models, which are constrained to dynamic data, can be obtained, but with a minimum of flow simulations at the fine scale.  相似文献   

3.
Modern geostatistical techniques allow the generation of high-resolution heterogeneous models of hydraulic conductivity containing millions to billions of cells. Selective upscaling is a numerical approach for the change of scale of fine-scale hydraulic conductivity models into coarser scale models that are suitable for numerical simulations of groundwater flow and mass transport. Selective upscaling uses an elastic gridding technique to selectively determine the geometry of the coarse grid by an iterative procedure. The geometry of the coarse grid is built so that the variances of flow velocities within the coarse blocks are minimum. Selective upscaling is able to handle complex geological formations and flow patterns, and provides full hydraulic conductivity tensor for each block. Selective upscaling is applied to a cross-bedded formation in which the fine-scale hydraulic conductivities are full tensors with principal directions not parallel to the statistical anisotropy of their spatial distribution. Mass transport results from three coarse-scale models constructed by different upscaling techniques are compared to the fine-scale results for different flow conditions. Selective upscaling provides coarse grids in which mass transport simulation is in good agreement with the fine-scale simulations, and consistently superior to simulations on traditional regular (equal-sized) grids or elastic grids built without accounting for flow velocities.  相似文献   

4.
Applying the iterative shooting/bisection technique for rapid forward modeling to the seismic explosion data, we could refine the crustal velocity structure model of the western part of the Hidaka collision zone, Hokkaido, Japan. We used only the precise P-wave first arrival data obtained by the Research Group for Explosion Seismology, which set up a 113.4-km-long profile in August 2000 along with 327 observation points and four shot points with TNT charges from 100 to 300 kg. We could estimate a two-dimensional inhomogeneous crustal velocity structure model with a velocity decrease in the eastern direction at a depth of 15.7 km, several portions of velocity reversals with depth and a low velocity anomaly proposed in previous studies. The root-mean-square of travel-time residuals was improved from 0.398 s for the previous structure model to 0.176 s for the present model with a reduction of 55.8%.  相似文献   

5.
Steady-state radial flow in three-dimensional heterogeneous media is investigated using a geostatistical approach. The goal of the study is to develop a model of the relationship between corescale hydraulic conductivities measured at the wellbore and the conductivity of the surrounding drainage region as measured by a larger scale flow experiment such as a pump test. Conductivity at the point or core-scale is modeled as a stationary and multivariate lognormal spatial random function. Conductivity of the drainage region is obtained by a weighted nonlinear spatial average over the point-scale values within. This empirical spatial averaging process is shown to yield excellent approximations of true effective drainage region conductivities calculated using a numerical flow model. The geostatistical model for point-scale conductivity and the spatial averaging process are used to determine the first and second order ensemble moments of drainage region conductivity. In particular, an expression is derived for the conditional expectation of drainage region conductivity given point-scale values measured at the wellbore. The results are illustrated in a case study of a well from a sandstone oil reservoir where both core and transient-test conductivity data from the same interval are available for comparison.  相似文献   

6.
7.
Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. “Pore-network modeling” for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst–Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling.  相似文献   

8.
Estimating the hydraulic properties of fractured aquifers is challenging due to the complexity of structural discontinuities that can generally be measured at a small scale, either in core or in outcrop, but influence groundwater flow over a range of scales. This modeling study uses fracture scanline data obtained from surface bedrock exposures to derive estimates of permeability that can be used to represent the fractured rock matrix within regional scale flow models. The model is developed using PETREL, which traditionally benefits from high resolution data sets obtained during oil and gas exploration, including for example seismic data, and borehole logging data (both lithological and geophysical). The technique consists of interpreting scanline fracture data, and using these data to generate representative Discrete Fracture Network (DFN) models for each field set. The DFN models are then upscaled to provide an effective hydraulic conductivity tensor that represents the fractured rock matrix. For each field site, the upscaled hydraulic conductivities are compared with estimates derived from pumping tests to validate the model. A hydraulic conductivity field is generated for the study region that captures the spatial variability of fracture networks in pseudo-three dimensions from scanline data. Hydraulic conductivities estimated using this approach compare well with those estimated from pumping test data. The study results suggest that such an approach may be feasible for taking small scale fracture data and upscaling these to represent the aquifer matrix hydraulic properties needed for regional groundwater modeling.  相似文献   

9.
空间尺度转换是近年来区域生态水文研究领域的一个基本研究问题。其需要主要是源于模型的输入数据与所能提供的数据空间尺度不一致以及模型所代表的地表过程空间尺度与所观测的地表过程空间尺度不吻合。综述了目前区域生态水文模拟研究中常用的空间尺度转换研究方法,包括向上尺度转换和向下尺度转换。详细论述了2种向下尺度转换方法: 统计学经验模型和动态模型。前者是通过将GCM大尺度数据与长期的历史观测数据比较从而建立统计学相关模型, 然后利用这个统计学经验模型进行向下的空间尺度转换. 然而动态模型并不直接对GCM数据进行向下尺度的转换,而是对与GCM进行动态耦合的区域气候模型(RCM) 的输出数据进行空间尺度转换. 通常后者所获得的数据精度要比前者高,但是一个主要缺点就是并不是全球所有的研究区域都有对应的RCM。还详细论述了2种向上尺度转换方法: 统计学经验模型和斑块模型。前者是建立一个能代表小尺度信息在大尺度上分布的密度分布概率函数, 然后利用这个函数在所需的大尺度上进行积分而求得大尺度所需的信息。而后者是根据相似性最大化原则将大尺度划分为若干个可操作的小尺度斑块,然后将计算的每个小尺度斑块的信息平均化得到大尺度所需的信息。通常在计算这种斑块化的小尺度信息的时候,对每个小尺度也会采用统计学经验模型来计算代表整个斑块小尺度的信息。建议用斑块模型与统计学经验模型相集合的方法来实现向上的空间尺度转换  相似文献   

10.
We consider flow and upscaling of flow properties from pore scale to Darcy scale, when the pore-scale geometry is changing. The idea is to avoid having to solve for the pore evolution at the pore scale, because this results in unmanageable complexity. We propose to use stochastic modeling to parametrize plausible modifications of the pore geometry and to construct distributions of permeability parametrized by Darcy-scale variables. To localize the effects of, e.g., clogging, we introduce an intermediate scale of pore-network models. We use local Stokes solvers to calibrate the throat permeability.  相似文献   

11.
Nanoscale zero-valent iron flakes for groundwater treatment   总被引:1,自引:0,他引:1  
Even today the remediation of organic contaminant source zones poses significant technical and economic challenges. Nanoscale zero-valent iron (NZVI) injections have proved to be a promising approach especially for source zone treatment. We present the development and the characterization of a new kind of NZVI with several advantages on the basis of laboratory experiments, model simulations and a field test. The developed NZVI particles are manufactured by milling, consist of 85 % Fe(0) and exhibit a flake-like shape with a thickness of <100 nm. The mass normalized perchloroethylene (PCE) dechlorination rate constant was 4.1 × 10?3 L/g h compared to 4.0 × 10?4 L/g h for a commercially available reference product. A transport distance of at least 190 cm in quartz sand with a grain size of 0.2–0.8 mm and Fe(0) concentrations between 6 and 160 g/kg (sand) were achieved without significant indications of clogging. The particles showed only a low acute toxicity and had no longterm inhibitory effects on dechlorinating microorganisms. During a field test 280 kg of the iron flakes was injected to a depth of 10–12 m into quaternary sand layers with hydraulic conductivities ranging between 10?4 and 10?5 m/s. Fe(0) concentrations of 1 g/kg (sand) or more [up to 100 g/kg (sand)] were achieved in 80 % of the targeted area. The iron flakes have so far remained reactive for more than 1 year and caused a PCE concentration decrease from 20.000–30.000 to 100–200 µg/L. Integration of particle transport processes into the OpenGeoSys model code proved suitable for site-specific 3D prediction and optimization of iron flake injections.  相似文献   

12.
13.
Compacted clay can minimize infiltration of liquid into waste or control the release of contaminated liquids to the surrounding soils and groundwater. Compacted lateritic soil treated with up to 12 % bagasse ash and municipal solid waste (MSW) leachate sourced from a domestic waste land fill were used in diffusion test studies to access the diffusion characteristics of some inorganic species present in the municipal solid waste leachate. Diffusion set-up were prepared containing 0, 4, 8 and 12 % bagasse ash—soil mixes compacted at 2 % wet of optimum using the modified proctor effort. The set up was saturated with water for 30 days before the introduction of MSW leachate and initiation of diffusion test for another 90 days. After diffusion testing, water content within the soil column showed a decrease with depth. Diffusion test results generally showed that diffusion is an active means of transport of chemical species even at very low flow rates in the compacted soil-bagasse ash mixes, and the effective diffusion coefficient is affected by bagasse ash. The pore fluid concentration profile for the various chemical species tested showed that the compacted soil-bagasse ash mix has the capacity to attenuate Ca2+, Pb2+ and Cr3+ ions.  相似文献   

14.
Acoustic imaging and sensor modeling are processes that require repeated solution of the acoustic wave equation. Solution of the wave equation can be computationally expensive and memory intensive for large simulation domains. One scheme for speeding up solution of the wave equation is the operator-based upscaling method. The algorithm proceeds in two steps. First, the wave equation is solved for fine grid unknowns internal to coarse blocks assuming the coarse blocks do not need to communicate with neighboring blocks in parallel. Second, these fine grid solutions are used to form a new problem which is solved on the coarse grid. Accurate and efficient wave propagation schemes also must avoid artificial reflections off of the computational domain edges. One popular method for preventing artificial reflections is the nearly perfectly matched layer (NPML) method. In this paper, we discuss applying NPML to operator upscaling for the wave equation. We show that although we only apply NPML to the first step of this two step algorithm (directly affecting the fine grid unknowns only), we still see a significant reduction of reflections back into the domain. We describe three numerical experiments (one homogeneous medium experiment and two heterogeneous media examples) in which we validate that the solution of the wave equation exponentially decays in the NPML regions. Numerical experiments of acoustic wave propagation in two dimensions with a reasonable absorbing layer thickness resulted in a maximum pressure reflection of 3–8%. While the coarse grid acceleration is not explicitly damped in our algorithm, the tight coupling between the two steps of the algorithm results in only 0.1–1% of acceleration reflecting back into the computational domain.  相似文献   

15.
The electrical conductivities of alkali feldspar solid solutions ranging in chemical composition from albite (NaAlSi3O8) to K-feldspar (KAlSi3O8) were measured at 1.0 GPa and temperatures of 873–1,173 K in a multi-anvil apparatus. The complex impedance was determined by the AC impedance spectroscopy technique in the frequency range of 0.1–106 Hz. Our experimental results revealed that the electrical conductivities of alkali feldspar solid solutions increase with increasing temperature, and the linear relationship between electrical conductivity and temperature fits the Arrhenius formula. The electrical conductivities of solid solutions increase with the increasing Na content at constant temperature. At 1.0 GPa, the activation enthalpy of solid solution series shows strong dependency on the composition, and there is an abrupt increase from the composition of Or40Ab60 to Or60Ab40, where it reaches a value of 0.96 eV. According to these results in this study, it is proposed that the dominant conduction mechanism in alkali feldspar solid solutions under high temperature and high pressure is ionic conduction. Furthermore, since the activation enthalpy is less than 1.0 eV for the alkali feldspar solid solutions, it is suggested to be a model where Na+ and K+ transport involves an interstitial mechanism for electrical conduction. The change of main charge carriers can be responsible for the abrupt increase in the activation energy for Or60Ab40. All electrical conductivity data were fitted by a general formula in order to show the dependence of activation enthalpy and pre-exponential factor on chemical composition. Combining our experimental results with the effective medium theory, we theoretically calculated the electrical conductivity of alkali feldspar granite, alkali feldspar quartz syenite, and alkali feldspar syenite with different mineral content and variable chemical composition of alkali feldspar at high temperatures at 1.0 GPa, and the calculated results are almost in agreement with previous experimental studies on silicate rocks.  相似文献   

16.
17.

In this work, a dynamic GIS modeling approach is presented that incorporates: a) geoinformatic techniques, b) 55-year historical meteorological data, and c) field measurements, in order to estimate soil erosion risk in intensively cultivated regions. The proposed GIS-based modeling approach includes the estimation of soil erosion rates due to surface water flow under current and future climate change scenarios A2 and B1 for the years 2030 and 2050. The soil erosion was estimated using the Universal Soil Loss Equation (USLE). The proposed soil erosion model was validated using field measurements at different sites of the study area. The results show that an extended part of the study area is under intense erosion with the mean annual loss to be 4.85 t/ha year−1. Moreover, an increase in rainfall intensity, especially for scenario B1, can generate a significant increase (32.44 %) in soil loss for the year 2030 and a much more (50.77 %) for the year 2050 in comparison with the current conditions. Regarding the scenario A2, a slight decrease (1.85 %) in soil loss was observed for the year 2030, while for 2050 the results show an adequate increase (7.31 %) in comparison with the present. All these approaches were implemented at one of the most productive agricultural areas of Crete in Greece dominated by olive and citrus crops.

  相似文献   

18.
Hydrogeological model of the Baltic Artesian Basin   总被引:1,自引:0,他引:1  
The Baltic Artesian Basin (BAB) is a complex multi-layered hydrogeological system in the south-eastern Baltic covering about 480,000 km2. The aim of this study is to develop a closed hydrogeological mathematical model for the BAB. Heterogeneous geological data from different sources were used to build the geometry of the model, i.e. geological maps and stratigraphic information from around 20,000 boreholes. The finite element method was used for the calculation of the steady-state three-dimensional (3D) flow of unconfined groundwater. The 24-layer model was divided into about 1,000,000 finite elements. A simple recharge model was applied to describe the rate of infiltration, and the discharge was set at the water-supply wells. Variable hydraulic conductivities were used for the upper (Quaternary) deposits, while constant hydraulic conductivity values were assumed for the deeper layers. The model was calibrated on the statistically weighted borehole water-level measurements, applying L-BFGS-B (automatic parameter optimization method) for the hydraulic conductivities of each layer. The principal flows inside the BAB and the integral flow parameters were analyzed. The modeling results suggest that deeper aquifers are characterized by strong southeast–northwest groundwater flow, which is altered by the local topography in the upper, active water-exchange aquifers.  相似文献   

19.
A two‐scales numerical analysis is set up in order to upscale the permeability of fractured materials such as concrete. To that aim, we couple finite element (FE) kinematics enhancements (strong discontinuities) representing fine scale cracks to the fine scale permeability tensor. The latter may be split into two parts: the first one is isotropic and corresponds to flows within the porosity of the material; the second one, based upon a set of cracks with different orientations and openings, is anisotropic. For the latter, each crack is a path for mass flow according to the Poiseuille law considering two infinite planes. We show how the upscaling procedure leads both to the definition of macroscopic permeability tensors as well as the flow rate evaluation for components of concrete structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Obtaining reliable hydrological input parameters is a key challenge in groundwater modeling. Although many quantitative characterization techniques exist, experience applying these techniques to highly heterogeneous real-world aquifers is limited. Three geostatistical characterization techniques are applied to the Edwards Aquifer, a limestone aquifer in south-central Texas, USA, for the purposes of quantifying the performance in an 88,000-cell groundwater model. The first method is a simple kriging of existing hydraulic conductivity data developed primarily from single-well tests. The second method involves numerical upscaling to the grid-block scale, followed by cokriging the grid-block conductivity. In the third method, the results of the second method are used to establish the prior distribution for a Bayesian updating calculation. Results of kriging alone are biased towards low values and fail to reproduce hydraulic heads or spring flows. The upscaling/cokriging approach removes most of the systematic bias. The Bayesian update reduced the mean residual by more than a factor of 10, to 6 m, approximately 2.5% of the total head variation in the aquifer. This agreement demonstrates the utility of automatic calibration techniques based on formal statistical approaches and lends further support for using the Bayesian updating approach for highly heterogeneous aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号