首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late Neoproterozoic bimodal dyke suites are abundant in the Arabian–Nubian Shield. In southern Israel this suite includes dominant alkaline quartz porphyry dykes, rare mafic dykes, and numerous composite dykes with felsic interiors and mafic margins. The quartz porphyry chemically corresponds to A-type granite. Composite dykes with either abrupt or gradational contacts between the felsic and mafic rocks bear field, petrographic and chemical evidence for coexistence and mixing of basaltic and rhyolitic magmas. Mixing and formation of hybrid intermediate magmas commenced at depth and continued during emplacement of the dykes. Oxygen isotope ratios of alkali feldspar in quartz porphyry (13 to 15‰) and of plagioclase in trachydolerite (10–11‰) are much higher than their initial magmatic ratios predicted by equilibrium with unaltered quartz (8 to 9‰) and clinopyroxene (5.8‰). The elevation of δ18O in alkali feldspar and plagioclase, and extensive turbidization and sericitization call for post-magmatic low-temperature (≤ 100 °C) water–rock interaction. Hydrous alteration of alkali feldspar, the major carrier of Rb and Sr in the quartz–porphyry, also accounts for the highly variable and unusually high I(Sr) of 0.71253 to 0.73648.

The initial 143Nd/144Nd ratios, expressed by εNd(T) values, are probably unaltered and show small variation in mafic and felsic rocks within a narrow range from + 1.4 to + 3.3. The Nd isotope signature suggests either a common mantle source for the mafic and silicic magmas or a juvenile crustal source for the felsic rocks (metamorphic rocks from the Elat area). However, oxygen isotope ratios of zircon in quartz porphyry [δ18O(Zrn) = 6.5 to 7.2‰] reveal significant crustal contribution to the rhyolite magma, suggesting that mafic and A-type silicic magmas are not co-genetic, although coeval. Comparison of 18O/16O ratios in zircon allows to distinguish two groups of A-type granites in the region: those with mantle-derived source, δ18O(Zrn) ranging from 5.5 to 5.8‰ (Timna and Katharina granitoids) and those with major contribution of the modified juvenile crustal component, δ18O(Zrn) varying from 6.5 to 7.2‰ (Elat quartz porphyry dykes and the Yehoshafat alkaline granite). This suggests that A-type silicic magmas in the northern ANS originated by alternative processes almost coevally.  相似文献   


2.
A. Demény  S. Harangi 《Lithos》1996,37(4):335-349
Processes of carbonate formation have been related to C and O isotopic compositions in the Mesozoic alkali basalt (Mecsek Mts.) and lamprophyre (Transdanubian Range) suites of Hungary. In the studied magrnatic rocks, carbonates are present as ocelli, amygdales, xenoliths, veins and groundmass carbonate. C and O isotope studies of these types of carbonate have yielded information on the origin of the carbonates and indicated the following processes of formation that determined the δ13C and δ18O values of the carbonates:(1)Crystallization of magmatic carbonate. Textural characteristics and δ13C values suggest formation of magmatic carbonate in alkali basalt and lamprophyre dikes, whereas the δ18O compositions of these carbonates indicate low temperature oxygen isotope exchange with magmatic fluids.(2) Assimilation of sedimentary carbonate by silicate magmas. Even completely recrystallized amygdales and ocelli of basalts and lamprophyres have preserved their sedimentary δ13C values. In contrast, variations in the extent of mobilization and isotope exchange with magmatic fluids are reflected in differences in the ranges of the δ18O values of amygdales, ocelli and veins, and can be attributed to different amounts of fluids involved in the magmatic events.(3) Low temperature alteration of magmatic rocks caused only 18O-enrichment in the carbonate amygdales of basalts and the groundmass carbonates of lamprophyres, indicating that no externally-derived CO2 was present in the alteration fluids.(4) Degassing of magma and magmatic fluid. Correlations between δ13C and δ18O data, magma crystallization depths and amygdale sizes in the alkali basalts suggest that CO2 degassing has been responsible for the negative δ13C and positive δ18O shifts observed. A similar trend was found in the lamprophyres, but the extent of the δ18O shift indicates that in these rocks H2O degassing also played an important role.  相似文献   

3.
We investigated the isotope composition (O, C, Sr, Nd, Pb) in mineral separates of the two Precambrian carbonatite complexes Tiksheozero (1.98 Ga) and Siilinjärvi (2.61 Ga) from the Karelian–Kola region in order to obtain information on Precambrian mantle heterogeneity. All isotope systems yield a large range of variations. The combination of cathodoluminescence imaging with stable and radiogenic isotopes on the same samples and mineral separates indicates various processes that caused shifts in isotope systems. Primary isotope signatures are preserved in most calcites (O, C, Sr, Pb), apatites (O, Sr, Nd), amphiboles (O), magnetites (O), and whole rocks (Sr, Nd).

The primary igneous C and O isotope composition is different for both complexes (Tiksheozero: δ13C = − 5.0‰, δ18O = 6.9‰; Siilinjärvi: δ13C = − 3.7‰, δ18O = 7.4‰) but very uniform and requires homogenization of both carbon and oxygen in the carbonatite melt. The lowest Sr isotope ratios of our carbonates and apatites from the Archaean Siilinjärvi (0.70137) and the Palaeoproterozoic Tiksheozero (0.70228) complexes are in the range of bulk silicate earth (BSE). Positive εNd values of the two carbonatites point to very early Archaean enrichment of Sm/Nd in the Fennoscandian mantle. No HIMU components could be detected in the two complexes, whereas Tiksheozero carbonatites give the first indication of Palaeoproterozoic U depletion for Fennoscandia.

Sub-solidus exchange processes with water during emplacement and cooling of carbonatites caused an increase in the oxygen isotope composition of some carbonates and probably also an increase of their 87Sr/86Sr ratio. A larger increase of initial Sr isotope ratios was found in carbonatized silicic rocks compared to carbonatite bodies. The Svecofennian metamorphic overprint (1.9–1.7 Ga) caused reset of Rb/Sr (mainly mica) and Pb/Pb (mainly apatite) isochron systems.  相似文献   


4.
Rare-earth-element, radiogenic and oxygen isotope, and mineral chemical data are presented for tholeiitic and alkaline Quaternary volcanism from Karasu Valley (Hatay, southeastern Turkey). Karasu Valley is the northern segment of the Dead Sea transform fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is an active fault zone that is known as “Karasu fault,” extending in a NE-SW direction. The Karasu Valley basaltic volcanics (KVBV) are subaphyric to porphyritic, with variable amounts of olivine, clinopyroxene, and plagioclase phenocrysts. Alkali basalts are generally characterized by high contents of olivine, clinopyroxene, and plagioclase phenocrysts. Their groundmass contains olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Tholeiitic basalts are subaphyric to porphyritic (high contents of olivine, clinopyroxene, and plagioclase). Their groundmass is similar to that of alkali basalts. The range of olivine phenocryst and microlite compositions for all analyzed samples is Fo81 to Fo43. Plagioclase compositions in both tholeiitic and alkali basalts range from andesine, An38 to bytownite, An72. Clinopyroxene compositions range from diopside to calcic augite. Most of the olivine, plagioclase, and clinopyroxene phenocrysts are normally zoned and/or unzoned. Fe-Ti oxides in both series are titanomagnetite and ilmenite.

Based on normative and geochemical data, the Karasu Valley basaltic volcanics are mostly olivine and quartz-tholeiites, and relatively lesser amount of alkali olivine-basalts. KVBV have low K2O/Na2O ratios, typically between 0.25 and 0.45. Olivine- and quartz-tholeiites are older than alkali olivine-basalts. Olivine tholeiites have Zr/Nb and Y/Nb ratios similar to alkaline rocks, but their Ba/Nb, Ba/La, and La/Nb ratios are slightly higher than alkali olivine-basalts. In contrast, quartz-tholeiites have the highest Ba/Nb, Ba/La, Zr/Nb, and Y/Nb and the lowest Nb/La ratios among the KVBV. Alkali basalts have 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.703353 to 0.704410 and 0.512860 to 0.512910, respectively. In contrast, quartz-tholeiites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios, which vary from 0.704410 to 0.705490 and 0.512628 to 0.512640, respectively. Olivine tholeiites have intermediate isotopic compositions ranging from 0.703490 to 0.704780 and 0.512699 to 0.512780, respectively. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotopic ratios of KVBV range from 18.817 to 19.325, 15.640 to 15.718, and 39.054 to 39.223, respectively. The range of O isotope values is between +5.84 and +7.97‰. The higher O and Sr isotopes in olivine- and quartz-tholeiites relative to alkali olivine-basalts can be explained by contamination of magmas by crustal materials.

The KVBV have intraplate chemistry similar to that of other tholeiitic and alkaline basalts in other within-plate environments, and isotopes range from isotopically depleted mantle to enriched isotope compositions similar to some enriched ocean islands. Trace-element and isotope data indicate that the KVBV are derived from a common OIB-like asthenospheric mantle source, but they have experienced different degrees of crustal contamination during their ascent to the surface, contemporaneous with little fractional crystallization. Although quartz-tholeiites display significant effects of crustal contamination, alkali olivine-basalts appear to have negligible or no crustal contamination in their geesis.  相似文献   

5.
Hydrogen and oxygen isotope studies were carried out on high and ultrahigh pressure metamorphic rocks in the eastern Dabie Mountains, China. The δ18O values of eclogites cover a wide range of −4.2 to +8.8‰, but the δD values of micas from the eclogites fall within a narrow range of −87 to −71‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18O values of −4 to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water–rock interaction before the high to ultrahigh pressure metamorphism. Heterogeneous δ18O values for the eclogite protoliths implies not only the varying degrees of the water–rock interaction before the metamorphism at different localities, but also the channelized flow of fluids during progressive metamorphism due to rapid plate subduction. Retrograde metamorphism caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions and could be derived from structural hydroxyls dissolved in nominally anhydrous minerals.  相似文献   

6.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

7.
The Neogene volcanic province of SE Spain (NVPS) is characterized by calc-alkaline (CA), high-K calc-alkaline (KCA), shoshonitic (SH), ultrapotassic (UP), and alkaline basaltic (AB) volcanic series. All these series, except the AB, have high LILE/LREE, LILE/HFSE and B/Be ratios and high but variable Sr, Pb and O isotope compositions. The KCA and SH lavas contain metapelitic xenoliths whose mineralogical and chemical composition are typical of anatectic restites. The geochemical characteristics of CA, KCA, SH and UP series suggest that they originated from the lithospheric mantle, previously contaminated by fluids derived from pelagic sediments. Additionally, the presence of restite xenoliths in the KCA and SH lavas indicates some sort of interaction between the mantle-derived magmas and the continental crust. Trace element and isotope modeling for the KCA and SH lavas and the restites, point towards the existence of two mixing stages. During the first stage, the lithospheric mantle was contaminated by 1–5% of fluids derived from pelagic sediments, which produced a fertile source heterogeneously enriched in incompatible elements (particularly LILE and LREE), as well as in 87Sr/86Sr, without significant modifications of the δ18O values. In the second stage, the primary melts derived from this metasomatized mantle, which inherited the enrichment in LILE, LREE and 87Sr/86Sr, interacted with crustal liquids from the Betic Paleozoic basement during their ascent towards the surface. This mixing process caused an increase in δ18O values and, to a lesser extent, in 87Sr/86Sr ratios. However, the incompatible trace elements abundances only change slightly, even for high mixing rates, due to their similar concentrations in both components. We suggest the following geodynamic scenario to account for the global evolution of this area: (1) a Late Cretaceous to Oligocene subduction scheme during which mantle metasomatism took place, shortly followed by Upper Oligocene to Lower Miocene continental collision, and (2) a Middle to Upper Miocene extensional event triggering partial melting of the previously metasomatized mantle and the extrusion of the CA and associated magmas.  相似文献   

8.
Analytical data on major elements and 31 trace elements in olivine nephelinites, nepheline basanites, basanitic alkali olivine basalts and their differentiates (tephrites, hawaiites, mugearites, benmoreites, latites, phonolites and trachytes) from Hegau, Kaiserstuhl, Rhön, Hessian Depression, Vogelsberg, Westerwald, Siebengebirge, E Eifel and Hocheifel are evaluated. They were based on 400 samples with new or unpublished data on about one third of the rocks. The Sr–Nd isotopic compositions for 78 rocks are included. The alkali basaltic volcanism is caused by adiabatic decompression of asthenospheric mantle updomed to a minimum depth of 50 km in connection with the Alpine continent collision. The chemical compositions of the primary basaltic melts from the different areas are similar containing about one hundred-fold enrichment of highly incompatible elements relative to the primitive mantle from partial melting of depleted and secondarily enriched peridotite. The elements Cs, K, Pb and Ti are specifically depleted in the basalts partly because of phlogopite being residual at partial melting. The Tertiary alkali basalts range in Nd-isotopic composition from 0.51288 to 0.51273 and in Sr-isotopic ratios from 0.7032 to 0.7042. These ranges indicate mixtures of HIMU, depleted and enriched mantle components in the metasomatically altered peridotite source which resembles that of certain ocean islands. The Nd-Sr-isotopic compositions of the Quaternary E Eifel are close to bulk Earth ratios. East and W Eifel plots differ distinctly from the Tertiary Hocheifel which is geographically intermediate. This isotopic difference, beside specific K/Na ratios, is probably caused by separate metasomatic pulses that immediately preceded the respective periods of volcanism. The metasomatically altered mantle had partly primitive mantle signatures (Nb/Ta, Zr/Sm and Th/U ratios) and partly ocean island (or MORB) source properties (Rb/Cs). A MORB source can be excluded because of the low K/Rb and high Th/U ratios. A correlation of D with 87Sr/86Sr in amphibole and phlogopite and a slightly larger 18O than in MORB is conformable with a seawater and crustal impact on the source of alkali basalts. Slightly higher than average water concentrations in the source of certain primary basaltic melts (indicated by amphibole phenocrysts in their basalts) are required for differentiation of these basalts in magma chambers of the upper crust. Model calculations are presented to explain compositions of differentiates which range from about 60% to about 20% residual melt. The latter are represented by phonolites and trachytes. The Nd- and Sr-isotopic signatures of the majority of differentiates indicate contamination by a granitic partial melt from the wall rocks of magma chambers. Olivine nephelinite magma was the common source of contaminated differentiates.  相似文献   

9.
Three types of chemically and isotopically distinct pore fluids from the southern San Joaquin basin previously recognized by J.B. Fisher and J.R. Boles also have distinctive 87Sr/86Sr ratios and Sr concentrations. Meteoric fluids have stable isotopic compositions which lie on or near the meteoric water line and low chlorinities. Sr concentrations are between 0.01 and 2.6 mg l−1, and 87Sr/86Sr ratios range from 0.7061 to 0.7078. Diagenetically modified connate marine fluids have δD-and δ18O-values more positive than −35‰ and 0‰, respectively, and have chlorinities generally comparable to seawater. Sr concentration are much higher than the meteoric group (16–198 mg l−1), although the 87Sr/86Sr ratios (0.7070–0.7081) are not distinctive. Mixed meteoric-modified connate fluids have δD, δ18O and chlorinity intermediate between the meteoric and modified connate groups. Sr concentrations are also intermediate, between 16 and 22 mg l−1, but 87Sr/86Sr ratios (0.7080–0.7087) are generally more radiogenic than either the meteoric or modified connate groups.

All of the fluids have 87Sr/86Sr ratios comparable to or lower than Tertiary seawater. Alteration of detrital plagioclase is the probable origin of the low isotopic ratios. Mass-balance calculations based on the Sr data suggest that essentially no transport of Sr occurred during diagenesis of sandstones containing modified connate pore fluids, while large amounts of Sr have been transported out of meteoric reservoirs by fluid flow. The chemically anomalous mixed meteoric-modified connate fluids contain the most radiogenic strontium in the basin. These fluids are spatially associated with major faults, and may represent clay mineral dehydration waters which have been transported upward from greater depth.

These results suggest that the three types of fluids identified by Fisher and Boles represent three distinct mass transport regimes: a largely stagnant deep-basin system containing modified connate pore fluids; an actively recharging meteoric system along the basin flanks; and a third system restricted to the southern basin which may be characterized by largescale cross-formational fluid flow, rather than dilution by meteoric waters.  相似文献   


10.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

11.
俯冲带是壳-幔物质循环的重要场所,硬玉岩可以记录这一循环过程。文中总结了俄罗斯极地乌拉尔硬玉岩的研究进展。硬玉岩呈脉状或透镜状产在蛇纹石化的方辉橄榄岩中,主要由硬玉和绿辉石组成。根据结构和颜色,硬玉可识别出两个世代。硬玉韵律环带发育,含有H2O和CH4流体包裹体,显示从流体中结晶的特征。硬玉岩中的锆石为热液锆石,锆石稀土元素中LaN/YbN=0.001~0.01,LuN/GdN=10~83,Ce/Ce*=2.8~72,显示正异常,δEu=0.53~1.02,类似于岩浆锆石。锆石的176Hf/177Hf=0.282 708~0.283 017,εHf(t)=+6~+17,类似于N-MORB的Hf同位素组成,锆石δ18O组成为5.03‰~6.04‰,平均δ18O为(5.45±0.11)‰,类似于岩浆热液和地幔的氧同位素组成。这可能反映了锆石是被俯冲带流体从途经火成岩中捕获的或者形成锆石的流体与寄主岩(方辉橄榄岩)达到了平衡。硬玉岩稀土元素配分模式近平坦或轻稀土元素略显富集,LaN/YbN比值为0.82~2.42,δEu为1.2~1.6,显示正异常,这与寄主岩稀土元素配分模式相似。富集Sr、Ba、Zr、Hf,Nb为负异常,与岛弧岩浆特征类似。(87Sr/86Sr)t为0.703 400~0.703 519(t=368 Ma),变化较小,与古海水差别明显;εNd(t)值为+0.77~+5.61,变化较大,与寄主岩(方辉橄榄岩)的Nd同位素组成类似,但不同于海水及沉积物的Nd同位素组成,表明硬玉岩的物质来源与寄主岩有明显继承关系,海水与沉积物的贡献不是主要的。矿物学和岩石学证据支持极地乌拉尔的硬玉岩主要是俯冲带流体与橄榄岩相互作用后并在其中结晶的产物。  相似文献   

12.
Late Archean (2.57 Ga) diamond-bearing eclogite xenoliths from Udachnaya, Siberia, exhibit geochemical characteristics including variation in oxygen isotope values, and correlations of δ18O with major elements and radiogenic isotopes which can be explained by an origin as subducted oceanic crust. Trace element analyses of constituent garnet and clinopyroxene by Laser-ICPMS are used to reconstruct whole-rock trace element compositions, which indicate that the eclogites have very low high field strength element (HFSE) concentrations and Zr/Hf and Nb/Ta ratios most similar to modern island arcs or ultradepleted mantle. Although hydrothermal alteration on the Archean sea floor had enough geochemical effect to allow the recognition of its effects in the eclogites and thus diagnose them as former oceanic crust, it was not severe enough to erase many other geochemical features of the original igneous rocks, particularly the relatively immobile HFSEs. Correlations of the trace element patterns with oxygen isotopes show that some, generally Mg-richer, eclogites originated as lavas, whereas others have lower δ18O and higher Sr and Eu contents indicating an origin as plagioclase-bearing intrusive rocks formed in magma chambers within the ocean crust. Major and trace element correlations demonstrate that the eclogites are residues after partial melting during the subduction process, and that their present compositions were enriched in MgO by this process. The original lava compositions were picritic, but not komatiitic, whereas the intrusives had lower, basaltic MgO contents. The HFSE signature of the eclogites may indicate that ocean floor basalts of the time were relatively close to island arcs and recycled material, which would be consistent with a larger number of smaller oceanic plates. Their composition appears to indicate that komatiitic ocean crust compositions were restricted to the early Archean which is not known to be represented among the eclogite xenolith population.  相似文献   

13.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

14.
S. Jung  E. Hoffer  S. Hoernes 《Lithos》2007,96(3-4):415-435
Major element, trace element and Nd–Sr–Pb–O isotope data for a suite of Neo-Proterozic, pre-orogenic, rift-related syenites from the Northern Damara orogen (Namibia) constrain their sources and petrogenesis. New U–Pb ages obtained on euhdreal titanite of inferred magmatic origin constrain the age of intrusion of the Lofdal and Oas syenites to ca. 750 Ma compatible with previous high-precision zircon analyses from the Oas complex. Major rock types from Lofdal and Oas are mildly sodic nepheline-normative and quartz-normative syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Primitive samples from Lofdal and Oas show depletion of Rb, K and Th relative to Ba and Nb together with variable negative anomalies of P and Ti on a primitive mantle-normalized diagram. Evolved samples from Oas develop significant negative Ba, Sr, P and Ti anomalies and positive U and Th anomalies mainly as a function of crystal fractionation processes. The lack of a pronounced negative Nb anomaly in samples from Lofdal suggests that involvement of a crustal component is negligible. For the nepheline-normative samples from Lofdal, the unradiogenic Sr and radiogenic Nd isotope composition and low δ18O values suggest derivation of these samples from a moderately depleted lithospheric upper mantle with crustal-like U/Pb ratios (87Sr/86Sr: 0.7031–0.7035, ε Nd: ca. + 1, δ18O: 7‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.58–15.60). Primitive samples of the Oas quartz-normative syenites have identical isotope characteristics (87Sr/86Sr: 0.7034, ε Nd: ca. + 1, δ18O: 6.5‰, 206Pb/204Pb: ca.18.00, 207Pb/204Pb: 15.59) whereas more differentiated samples have higher 87Sr/86Sr ratios (0.709–0.714), slightly higher δ18O values (7.0–7.1‰), less radiogenic ε Nd values (− 1.1 to − 1.4) and more radiogenic 206Pb/204Pb ratios up to 18.27. These features together with model calculations using Sr–Nd–Pb isotopes suggest modification of a primary syenite magma by combined AFC processes involving ancient continental crust. In this case, high Nb abundances of the parental syenite liquid prevent the development of significant negative Nb anomalies that may be expected due to interaction with continental crust.  相似文献   

15.
Jifeng Ying  Xinhua Zhou  Hongfu Zhang 《Lithos》2004,75(3-4):413-426
Major and trace element and Nd–Sr isotope data of the Mesozoic Laiwu–Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu–Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/86Sr (0.7095–0.7106) and very low Nd (−18.2 to −14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd–Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.  相似文献   

16.
山东地区新生代玄武岩主要分布在郯庐断裂带及其以东地区,在鲁西地区分布较少。本文报道了鲁西地区周村玄武岩的全岩主、微量元素组成、橄榄石斑晶及其熔体包裹体Pb同位素组成。结果表明,周村玄武岩为弱碱性玄武岩,其主量元素具有较高SiO_2和Al_2O_3,较低碱(Na_2O+K_2O)、CaO/Al_2O_3、Fe_2O_3~T(Fe_2O_3~T=Fe O/0.8998+Fe_2O_3)的特征;微量元素在原始地幔标准化蛛网图上与EMI洋岛玄武岩(OIB)相似,表现为明显的Ba、K和Sr正异常,Th和Pb负异常,无Nb、Ta和Ti异常;熔体包裹体~(207)Pb/~(206)Pb和~(208)Pb/~(206)Pb分别为0.894~0.921和2.166~2.213,略高于EMI-OIB。这些特征和鲁西地区无棣大山玄武岩有明显区别,但与山东其它地区的弱碱性-拉斑玄武岩相似。周村玄武岩的橄榄石斑晶Ni、Fe/Mn和Ca分别为1403~2611μg/g,70~93和824~2003μg/g。与橄榄岩熔体结晶的橄榄石成分相比,给定橄榄石Fo值,周村玄武岩橄榄石斑晶具有高Ni和Fe/Mn比值,低Ca的特征。结合全岩低CaO和高FeO/MnO比值,橄榄石成分指示周村玄武岩的源区岩性为辉石岩,其形成需要高比例的来自再循环地壳的英安质熔体交代地幔橄榄岩。高比例的英安质熔体和周村玄武岩的微量元素特征,进一步说明该再循环地壳为含辉长岩洋壳。本文的研究结果暗示山东地区弱碱性-拉斑玄武岩的源区辉石岩,主要与再循环洋壳有关。  相似文献   

17.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


18.
Tertiary basaltic magmatism in Serbia occurred through three episodes: (i) Paleocene/Eocene, when mostly east Serbian mafic alkaline rocks (ESPEMAR) formed, (ii) Oligocene/Miocene, dominated by high-K calc–alkaline basalts, shoshonites (HKCA–SHO) and ultrapotassic (UP) rocks, and (iii) Pliocene episode when rocks similar to (ii) originated. In this study, the geodynamics inferred from petrogenesis of the (i) and (ii) episodes are discussed.

The ESPEMAR (62–39 Ma) occur mainly as mantle xenolith-bearing basanites. Their geochemical features, such as the REE patterns, elevated HFSE contents and depleted Sr–Nd isotope signatures, indicate a relatively small degree of melting of an isotopically depleted mantle source. Their mantle-normalized trace element patterns are flat to concave and “bell-shaped”, characteristic of an OIB source free of subduction component. 87Sr/86Sri and 143Nd/144Ndi isotope ratios (0.7030–0.7047 and 0.5127–0.5129, respectively) indicate a depleted source for the ESPEMAR similar to the European Asthenospheric Reservoir (EAR).

The HKCA–SHO rocks (30–21 Ma) occur as basalts, basaltic andesites and trachyandesites. They show enrichment in LILE and depletion in HFSE with all the distinctive features of calc–alkaline arc-type magmatism. This is coupled with somewhat enriched Sr–Nd isotope signature (87Sr/86Sri=0.7047–0.7064, 143Nd/144Ndi=0.5124–0.5126). All these features are characteristic of subduction-related metasomatism and fluxing of the HKCA–SHO mantle source with fluids/melts released from subducted sedimentary material.

UP rocks (35–21 Ma) appear as (i) Si-rich lamproites and related rocks and (ii) olivine leucitites and related rocks. UP rocks have high-LILE/HFSE ratios with enrichment for some LILE around 1000× primitive mantle, troughs at Nb and Ti, and peaks of Pb in their mantle-normalized patterns. They also show highly fractionated REE patterns (La/Yb up to 27, LaN up to 400). The isotopic ratios approach crustal values (87Sr/86Sri=0.7059–0.7115 and 143Nd/144Ndi=0.5122–0.5126), and that signature is typical for ultrapotassic rocks worldwide.

The Paleocene/Eocene episode and formation of the ESPEMAR is referred to as asthenospheric-derived magmatism. This magmatism originated through passive riftlike structures related to possible short relaxational phases during predominantly collisional and compressional conditions. The Oligocene/Miocene episode and formation of HKCA–SHO and UP rocks were dominated by lithospheric-controlled magmatism. Its origin is connected with the activity of a wide dextral wrench corridor generated along the axis of the Dinaride orogen which collapsed in response to thickened crust caused by earlier compressional processes.

To explain conditions of these two magmatic events, a three-stage geodynamic model has been proposed: (1) subduction–termination/collision stage (Paleocene/Eocene), (2) collision stage (Eocene) and (3) postcollision/collapse stage (Oligocene/early Miocene).  相似文献   


19.
The δ18O and δ17O values of olivine from Kenna are 7.6 and 3.0%, respectively, relative to SMOW. These values are typical of ureilites which form a unique group on a δ17O -δ18O graph. The ureilites are related to, but not directly derived from, the anhydrous phases of C2 and C3 meteorites. The 18O/16O fractionation between pyroxene and olivine is 0.60, indicating a temperature of last equilibration of 1000 ± 100°C.  相似文献   

20.
The Bandombaai Complex (southern Kaoko Belt, Namibia) consists of three main intrusive rock types including metaluminous hornblende- and sphene-bearing quartz diorites, allanite-bearing granodiorites and granites, and peraluminous garnet- and muscovite-bearing leucogranites. Intrusion of the quartz diorites is constrained by a U–Pb zircon age of 540±3 Ma.

Quartz diorites, granodiorites and granites display heterogeneous initial Nd- and O isotope compositions (Nd (540 Ma)=−6.3 to −19.8; δ18O=9.0–11.6‰) but rather low and uniform initial Sr isotope compositions (87Sr/86Srinitial=0.70794–0.70982). Two leucogranites and one aplite have higher initial 87Sr/86Sr ratios (0.70828–0.71559), but similar initial Nd (−11.9 to −15.8) and oxygen isotope values (10.5–12.9‰). The geochemical and isotopic characteristics of the Bandombaai Complex are distinct from other granitoids of the Kaoko Belt and the Central Zone of the Damara orogen. Our study suggests that the quartz diorites of the Bandombaai Complex are generated by melting of heterogeneous mafic lower crust. Based on a comparison with results from amphibolite-dehydration melting experiments, a lower crustal garnet- and amphibole-bearing metabasalt, probably enriched in K2O, is a likely source rock for the quartz diorites. The granodiorites/granites show low Rb/Sr (<0.6) ratios and are probably generated by partial melting of meta-igneous (intermediate) lower crustal sources by amphibole-dehydration melting. Most of the leucogranites display higher Rb/Sr ratios (>1) and are most likely generated by biotite-dehydration melting of heterogeneous felsic lower crust. All segments of the lower crust underwent partial melting during the Pan-African orogeny at a time (540 Ma) when the middle crust of the central Damara orogen also underwent high T, medium P regional metamorphism and melting. Geochemical and isotope data from the Bandombaai Complex suggest that the Pan-African orogeny in this part of the orogen was not a major crust-forming episode. Instead, even the most primitive rock types of the region, the quartz diorites, represent recycled lower crustal material.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号