首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Kirchhoff–Helmholtz (KH) theory is extended to synthesize two-way elastic wave propagation in 3D laterally heterogeneous, anisotropic media. I have developed and tested numerically a specialized algorithm for the generation of three-component synthetic seismograms in multi-layered isotropic and transversely isotropic (TI) media with dipping interfaces and tilted axes of symmetry. This algorithm can be applied to vertical seismic profile (VSP) geometries and works well when the receiver is located near the reflector interface. It is superior to ray methods in predicting elliptical polarization effects observed on radial and transverse components. The algorithm is used to study converted-wave propagation for determining fracture-related shear-wave anisotropy in realistic reservoir models. Results show that all wavefront attributes are strongly affected by the anisotropy. However, it is necessary to resolve a trade-off between the effects of fractures and formation dip prior to converted-wave interpretation. These results provide some assurance that the present scheme is sufficiently versatile to handle shear wave behaviour due to various generalized rays propagating in complex geological models.  相似文献   

2.
Paraxial ray methods have found broad applications in the seismic ray method and in numerical modelling and interpretation of high-frequency seismic wave fields propagating in inhomogeneous, isotropic or anisotropic structures. The basic procedure in paraxial ray methods consists in dynamic ray tracing. We derive the initial conditions for dynamic ray equations in Cartesian coordinates, for rays initiated at three types of initial manifolds given in a three-dimensional medium: 1) curved surfaces (surface source), 2) isolated points (point source), and 3) curved, planar and non-planar lines (line source). These initial conditions are very general, valid for homogeneous or inhomogeneous, isotropic or anisotropic media, and for both a constant and a variable initial travel time along the initial manifold. The results presented in the paper considerably extend the possible applications of the paraxial ray method.  相似文献   

3.
This paper is the second in a sequel of two papers and dedicated to the computation of paraxial rays and dynamic characteristics along the stationary rays obtained in the first paper. We start by formulating the linear, second‐order, Jacobi dynamic ray tracing equation. We then apply a similar finite‐element solver, as used for the kinematic ray tracing, to compute the dynamic characteristics between the source and any point along the ray. The dynamic characteristics in our study include the relative geometric spreading and the phase correction due to caustics (i.e. the amplitude and the phase of the asymptotic form of the Green's function for waves propagating in 3D heterogeneous general anisotropic elastic media). The basic solution of the Jacobi equation is a shift vector of a paraxial ray in the plane normal to the ray direction at each point along the central ray. A general paraxial ray is defined by a linear combination of up to four basic vector solutions, each corresponds to specific initial conditions related to the ray coordinates at the source. We define the four basic solutions with two pairs of initial condition sets: point–source and plane‐wave. For the proposed point–source ray coordinates and initial conditions, we derive the ray Jacobian and relate it to the relative geometric spreading for general anisotropy. Finally, we introduce a new dynamic parameter, similar to the endpoint complexity factor, presented in the first paper, used to define the measure of complexity of the propagated wave/ray phenomena. The new weighted propagation complexity accounts for the normalized relative geometric spreading not only at the receiver point, but along the whole stationary ray path. We propose a criterion based on this parameter as a qualifying factor associated with the given ray solution. To demonstrate the implementation of the proposed method, we use several isotropic and anisotropic benchmark models. For all the examples, we first compute the stationary ray paths, and then compute the geometric spreading and analyse these trajectories for possible caustics. Our primary aim is to emphasize the advantages, transparency and simplicity of the proposed approach.  相似文献   

4.
The common ray approximation considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common ray approximation.We derive the equations for estimating the travel-time errors due to the isotropic and anisotropic common ray approximations of the coupling ray theory. These equations represent the main result of the paper. The derivation is based on the general equations for the second-order perturbations of travel time. The accuracy of the anisotropic common ray approximation can be studied along the isotropic common rays, without tracing the anisotropic common rays.The derived equations are numerically tested in three 1-D models of differing degree of anisotropy. The first-order and second-order perturbation expansions of travel time from the isotropic common rays to anisotropic-ray-theory rays are compared with the anisotropic-ray-theory travel times. The errors due to the isotropic common ray approximation and due to the anisotropic common ray approximation are estimated. In the numerical example, the errors of the anisotropic common ray approximation are considerably smaller than the errors of the isotropic common ray approximation.The effect of the isotropic common ray approximation on the coupling-ray-theory synthetic seismograms is demonstrated graphically. For comparison, the effects of the quasi-isotropic projection of the Green tensor, of the quasi-isotropic approximation of the Christoffel matrix, and of the quasi-isotropic perturbation of travel times on the coupling-ray-theory synthetic seismograms are also shown. The projection of the travel-time errors on the relative errors of the time-harmonic Green tensor is briefly presented.  相似文献   

5.
弱各向异性介质弹性波的准各向同性近似正演模拟   总被引:5,自引:5,他引:0       下载免费PDF全文
准各向同性(QI)近似可用于弱各向异性介质的正演模拟.本文通过运用QI方法的零阶和一阶近似,计算了VTI介质模型的地震记录.得出的地震记录与标准各向同性射线理论(IRT)和基于伪谱法的三维地震正演模拟得出的地震记录作了比较,可以认为是精确的合成地震记录.  相似文献   

6.
Wavefront construction (WFC) methods provide robust tools for computing ray theoretical traveltimes and amplitudes for multivalued wavefields. They simulate a wavefront propagating through a model using a mesh that is refined adaptively to ensure accuracy as rays diverge during propagation. However, an implementation for quasi-shear (qS) waves in anisotropic media can be very difficult, since the two qS slowness surfaces and wavefronts often intersect at shear-wave singularities. This complicates the task of creating the initial wavefront meshes, as a particular wavefront will be the faster qS-wave in some directions, but slower in others. Analogous problems arise during interpolation as the wavefront propagates, when an existing mesh cell that crosses a singularity on the wavefront is subdivided. Particle motion vectors provide the key information for correctly generating and interpolating wavefront meshes, as they will normally change slowly along a wavefront. Our implementation tests particle motion vectors to ensure correct initialization and propagation of the mesh for the chosen wave type and to confirm that the vectors change gradually along the wavefront. With this approach, the method provides a robust and efficient algorithm for modeling shear-wave propagation in a 3-D, anisotropic medium. We have successfully tested the qS-wave WFC in transversely isotropic models that include line singularities and kiss singularities. Results from a VTI model with a strong vertical gradient in velocity also show the accuracy of the implementation. In addition, we demonstrate that the WFC method can model a wavefront with a triplication caused by intrinsic anisotropy and that its multivalued traveltimes are mapped accurately. Finally, qS-wave synthetic seismograms are validated against an independent, full-waveform solution.  相似文献   

7.
We study wave propagation through isotropic and anisotropic scatterer distributions in order to observe azimuthal variations in velocity and apparent attenuation. Using thin aluminum plates as physical models, we obtained seismograms for compressional and shear wave propagation through heterogeneous media. Three random distributions of scatterers are studied: circular scatterers in isotropic distributions (modeling circular scatterers), elongated scatterers in isotropic distributions (modeling randomly oriented elliptical scatterers), and elongated scatterers in anisotropic distributions (modeling aligned elliptical scatterers). All scatterers had approximately the same cross-sectional area and were filled with epoxy in order to reduce the impedance contrast. In addition to seismograms recorded for no scatterers, seismograms were recorded for several scatterer volume fractions. Azimuths were measured relative to the long axis of the aligned elongated scatterers. Velocities were calculated using travel times and phase shifts at low frequencies. The velocities measured from the data were compared to simple low-frequency average-velocity theories based on thin lamellae or on distributions of penny-shaped cracks. The apparent attenuation for different scatterer distributions was computed using spectral ratios.Comparisons of the results for circular and randomly oriented elongated scatterers were made to determine the effects of scatterer shape. As expected, the circular and randomly oriented elongated scatterers showed no systematic azimuthal variation in velocity. The velocity anomalies were systematically larger for the randomly oriented elongated scatterers than for the circular scatterers. Both methods of theoretical estimation for the isotropic velocities produced velocities significantly larger than those measured. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the circular scatterers.Comparisons of the results for the randomly oriented and aligned elongated scatterers were made to determine the effects of anisotropy in the scatterer distribution. Compressional waves for the aligned elongated scatterers with wave propagation parallel to the scatterers had larger velocities than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers for all velocity calculations. Shear wave velocities were complicated by an anomalous phase change in the shear wave seismograms for azimuths less than 40° and were not as conclusive. The general trend of the theoretical velocities is similar to the velocities calculated from the data. There are, however, what appear to be significant differences. The spectral ratios showed more apparent attenuation for the randomly oriented elongated scatterers than for the aligned elongated scatterers with wave propagation parallel to the scatterers, and less attenuation than for the aligned elongated scatterers with wave propagation perpendicular to the scatterers.  相似文献   

8.
Shear-wave splitting has been identified in many three-component seismograms from two separate field experiments on a section of the North Anatolian Fault in North-West Turkey. These observations are consistent with shear-wave propagation through a zone of extensive-dilitancy anisotropy. A preliminary attempt has been made to confirm this interpretation by simultaneously inverting suites of arrival-times for hypocentral locations and for parameters describing an anisotropic halfspace. Although the inversion procedure is not globally convergent, it is possible to recognize the true solution by systematically varying the initial conditions. Applied to selected data sets, the inversion defines several anisotropic models that fit the data significantly better than a simple isotropic model, and display the anisotropy required by the shear-wave splitting. However, most of these anisotropic models are not superior when they are used to individually locate events in a much larger data set. However, for each experiment, there is a single model that produces clearly superior locations for the larger data sets than those of other anisotropic or simple isotropic models. Both models display similar velocity variations which are characteristic of propagation through distributions of biplanar cracks displaying orthorhombic symmetry. The principal axes of the two models are oriented in similar directions and are within 20° of the principal axis of regional stress derived from fault-plane solutions. The solutions indicate low velocities close to the tensional axis, as would be expected in extensive-dilatancy anisotropy.  相似文献   

9.
The velocity-stress formulation for propagation of elastic seismic waves through 2D heterogeneous transversely isotropic media of arbitrary orientation is presented. The equations are recast into a finite-difference scheme and solved numerically using fourth-order spatial operators and a second-order temporal operator on a staggered grid. Absorbing, free-surface and symmetry boundary conditions have been implemented. Test cases compare well with other published solutions. Synthetic seismograms are calculated over two idealized models: (i) vertical fractures in granite with a dolerite sill reflector and (ii) a dipping anisotropic shale. Comparisons with the isotropic counterparts show significant differences which may have to be accounted for in seismic processing in the future.  相似文献   

10.
Finite-difference modelling of S-wave splitting in anisotropic media   总被引:4,自引:0,他引:4  
We have implemented a 3D finite‐difference scheme to simulate wave propagation in arbitrary anisotropic media. The anisotropic media up to orthorhombic symmetry were modelled using a standard staggered grid scheme and beyond (monoclinic and triclinic) using a rotated staggered grid scheme. The rationale of not using rotated staggered grid for all types of anisotropic media is that the rotated staggered grid schemes are more expensive than standard staggered grid schemes. For a 1D azimuthally anistropic medium, we show a comparison between the seismic data generated by our finite‐difference code and by the reflectivity algorithm; they are in excellent agreement. We conducted a study on zero‐offset shear‐wave splitting using the finite‐difference modelling algorithm using the rotated staggered grid scheme. Our S‐wave splitting study is mainly focused on fractured media. On the scale of seismic wavelenghts, small aligned fractures behave as an equivalent anisotropic medium. We computed the equivalent elastic properties of the fractures and the background in which the fractures were embedded, using low‐frequency equivalent media theories. Wave propagation was simulated for both rotationally invariant and corrugated fractures embedded in an isotropic background for one, or more than one, set of fluid‐filled and dry fractures. S‐wave splitting was studied for dipping fractures, two vertical non‐orthogonal fractures and corrugated fractures. Our modelling results confirm that S‐wave splitting can reveal the fracture infill in the case of dipping fractures. S‐wave splitting has the potential to reveal the angle between the two vertical fractures. We also notice that in the case of vertical corrugated fractures, S‐wave splitting is sensitive to the fracture infill.  相似文献   

11.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

12.
The ray formulae for the radiation from point sources in unbounded inhomogeneous isotropic as well as anisotropic media consist of two factors. The first one depends fully on the type and orientation of the source and on the parameters of the medium at the source. We call this factor the directivity function. The second factor depends on the parameters of the medium surrounding the source and this factor is the well-known geometrical spreading. The displacement vector and the radiation pattern defined as a modulus of the amplitude of the displacement vector measured on a unit sphere around the source are both proportional to the ratio of the directivity function and the geometrical spreading.For several reasons it is desirable to separate the two mentioned factors. For example, there are methods in exploration seismics, which separate the effects of the geometrical spreading from the observed wave field (so-called true amplitude concept) and thus require the proposed separation. The separation also has an important impact on computer time savings in modeling seismic wave fields generated by point sources by the ray method. For a given position in a given model, it is sufficient to calculate the geometrical spreading only once. A multitude of various types of point sources with a different orientation can then be calculated at negligible additional cost.In numerical examples we show the effects of anisotropy on the geometrical spreading, the directivity and the radiation pattern. Ray synthetic seismograms due to a point source positioned in an anisotropic medium are also presented and compared with seismograms for an isotropic medium.  相似文献   

13.
本文拓展了一种模拟地震波在地球核幔边界D″区各向异性介质中传播的数值方法:谱元-简正振型耦合方法(CSEM).该方法通过在球对称各向同性介质空间采用简正振型方法,在各向异性的D″区采用谱元方法,并在两种介质的边界采用"DtN"算子耦合的策略计算一维模型PREM(见文献[1])或修改后的D″区横向各向同性VTI-PREM模型的理论地震图.模拟所得数值解结果与采用简正振型方法得到的解析解结果进行对比以验证方法的精度.在中国科学院地球深部结构重点实验室高性能计算机上使用128个CPU计算得到的结果显示,在10-5~0.125 Hz的频率范围内谱元简正振型法得到的波形与简正振型方法能很好拟合.此外,对于VTI介质结构模型,谱元简正振型法能够准确模拟S波分裂现象,从而验证了谱元简正振型耦合方法对各向异性介质中地震波传播数值模拟是一种有效的方法.  相似文献   

14.
The coupling ray theory is usually applied to anisotropic common reference rays, but it is more accurate if it is applied to reference rays which are closer to the actual wave paths. If we know that a medium is close to uniaxial (transversely isotropic), it may be advantageous to trace reference rays which resemble the SH–wave and SV–wave rays. This paper is devoted to defining and tracing these SH and SV reference rays of elastic S waves in a heterogeneous generally anisotropic medium which is approximately uniaxial (approximately transversely isotropic), and to the corresponding equations of geodesic deviation (dynamic ray tracing). All presented equations are simultaneously applicable to ordinary and extraordinary reference rays of electromagnetic waves in a generally bianisotropic medium which is approximately uniaxially anisotropic. The improvement of the coupling–ray–theory seismograms calculated along the proposed SH and SV reference rays, compared to the coupling–ray–theory seismograms calculated along the anisotropic common reference rays, has already been numerically demonstrated by the authors in four approximately uniaxial velocity models.  相似文献   

15.
Certain crack-influence parameters of Sayers and Kachanov are shown to be directly related to Thomsen's weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar reservoirs, i.e., those anisotropic reservoirs having two axes that are equivalent but distinct from the third axis), especially for horizontal transversely isotropic seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the Earth's surface. The approach presented suggests one method of inverting for fracture density from wave speed data. A significant fraction of the technical effort in the paper is devoted to showing how to predict the angular location of the true peak (or trough) of the quasi-SV-wave for polar media and especially how this peak is related to another angle that is very easy to compute. The axis of symmetry is always treated here as the x 3-axis for either vertical transversely isotropic symmetry (due, for example, to horizontal cracks), or horizontal transversely isotropic symmetry (due to aligned vertical cracks). Then, the meaning of the stiffnesses is derived from the fracture analysis in the same way for vertical transversely isotropic and horizontal transversely isotropic media, but for horizontal transverse isotropy the wave speeds relative to the Earth's surface are shifted by  90o  in the plane perpendicular to the aligned vertical fractures. Skempton's poroelastic coefficient B is used as a general means of quantifying the effects of fluids inside the fractures. Explicit Biot-Gassmann-consistent formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either vertical transversely isotropic or horizontal transversely isotropic symmetry of the reservoir.  相似文献   

16.
In-seam seismic surveys with channel waves have been widely used in the United Kingdom and elsewhere to map coal-seams and to detect anomalous features such as dirt bands, seam thinning and thickening, and particularly in-seam faulting. Although the presence of cleat-induced anisotropy has been recognized in the past, almost all previous analyses have assumed homogeneous isotropic or transversely isotropic coal-seams. Channel waves, however, exhibit properties which cannot be fully explained without introducing anisotropy into the coal-seam. In particular, Love-type channel waves are observed for recording geometries where, in a homogeneous isotropic or transversely isotropic structure, the source would not be expected to excite transverse motion. Similarly, modes of channel-wave propagation display the coupled three-component motion of generalized modes in anisotropic substrates, which would not be expected for Rayleigh and Love wave motion in isotropy or in transversely isotropic media with azimuthal isotropy. We model the observed in-seam seismic channel waves with synthetic seismograms to gain an understanding of the effects of cleat-induced anisotropy on the behaviour of channel waves. The results show a reasonable good match with the observations in traveltime, relative amplitudes, dispersion characteristics and particle motions. We demonstrate that anisotropy in the surrounding country rocks contributes significantly to the coupling of channel wave particle motion, although its effect is not as strong as the anisotropy in the coal-seam. We conclude that the effects of cleat- and stress-induced anisotropy are observed and can be modelled with synthetic seismograms, and that anisotropy must be taken into account for the detailed interpretation of channel waves.  相似文献   

17.
Wavefront charts in anisotropic gradient media are a useful tool in ray geometric constructions, particular in shear-wave exploration. They can be constructed by: (i) a family of wavefronts that contains a vertical plane as member - it is convenient to choose constant time increments; (ii) tracing one ray that makes everywhere the angle with the normal to the wavefront that is required by the anisotropy of the medium; (iii) scaling this ray to obtain a set of rays with different ray parameters; (iv) shifting these rays (with wavefront elements attached) so that they pass through a common source point; (v) interpolating the wavefronts between the elements. The construction is particularly simple in linear-gradient media, since here all members of the family of wavefronts are planes. Since the ray makes everywhere the angle prescribed by the anisotropy with the normal of the (plane) wavefronts, the ray has the shape of the slowness curve rotated by ?π/2. For isotropic media the slowness curve is a circle, and thus rays are circular arcs. The circles themselves intersect in the source point and in a second point above the surface of the earth. This provides a simple proof that wavefronts emanating from a point source in an isotropic linear-gradient medium are spheres: inversion of the set of circular rays with the source as centre maps the pencil of circular rays into a pencil of straight lines passing through a point. A pencil of concentric spheres around this point is perpendicular to the pencil of straight lines. On inverting back the pencil of spheres is mapped into another pencil of spheres that is perpendicular to the circular rays.  相似文献   

18.
— In this paper, an overview of the calculation of synthetic seismograms using the Gaussian beam method is presented accompanied by some representative applications and new extensions of the method. Since caustics are a frequent occurrence in seismic wave propagation, modifications to ray theory are often necessary. In the Gaussian beam method, a summation of paraxial Gaussian beams is used to describe the propagation of high-frequency wave fields in smoothly varying inhomogeneous media. Since the beam components are always nonsingular, the method provides stable results over a range of beam parameters. The method has been shown, however, to perform better for some problems when different combinations of beam parameters are used. Nonetheless, with a better understanding of the method as well as new extensions, the summation of Gaussian beams will continue to be a useful tool for the modeling of high-frequency seismic waves in heterogeneous media.  相似文献   

19.
The 4 × 4 T -propagator matrix of a 3D central ray determines, among other important seismic quantities, second-order (parabolic or hyperbolic) two-point traveltime approximations of certain paraxial rays in the vicinity of the known central ray through a 3D medium consisting of inhomogeneous isotropic velocity layers. These rays result from perturbing the start and endpoints of the central ray on smoothly curved anterior and posterior surfaces. The perturbation of each ray endpoint is described only by a two-component vector. Here, we provide parabolic and hyperbolic paraxial two-point traveltime approximations using the T -propagator to feature a number of useful 3D seismic models, putting particular emphasis on expressing the traveltimes for paraxial primary reflected rays in terms of hyperbolic approximations. These are of use in solving several forward and inverse seismic problems. Our results simplify those in which the perturbation of the ray endpoints upon a curved interface is described by a three-component vector. In order to emphasize the importance of the hyperbolic expression, we show that the hyperbolic paraxial-ray traveltime (in terms of four independent variables) is exact for the case of a primary ray reflected from a planar dipping interface below a homogeneous velocity medium.  相似文献   

20.
A vector convolutional model for multicomponent data acquired in an anisotropic earth is used as a basis for developing algebraic solutions to interpret near-offset VSP data. This interpretation of the cumulative or interval medium response (Green's tensor) for shear waves, determines a polarization azimuth for the leading shear wave and the time-delay between the fast and slow split waves. The algebraic solutions effectively implement least-squares eigenanalysis or singular value decomposition. Although the methodology for shear-wave analysis is strictly relevant to a transmission response, it can be adapted to surface data for a uniform anisotropic overburden. The techniques perform well when calibrated and tested using synthetic seismograms from various anisotropic models. Noise tests demonstrate the sensitivity of the interval measurements to local interferences, particularly if the shear waves are generated by one source. Although the algorithms are faster than numerical search routines, this is not seen as their major advantage. The solutions may have potential in near real-time interpretation of shear-wave data in well logging, where they may be coded on a microchip to provide a direct stream of separated shear waves, or polarization and birefringence information. There may also be some benefit for large prestack multicomponent surface data sets, where the solutions provide a direct transformation to the split-shear-wave components, reducing the storage space for further processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号